Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+370169x-37609729\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+370169xz^2-37609729z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+5922709x-2401099930\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2411, 120718)$ | $6.3515780753533296452921620003$ | $\infty$ |
$(731, 24598)$ | $0$ | $4$ |
Integral points
\( \left(99, -50\right) \), \( \left(731, 24598\right) \), \( \left(731, -25330\right) \), \( \left(2411, 120718\right) \), \( \left(2411, -123130\right) \)
Invariants
Conductor: | $N$ | = | \( 87374 \) | = | $2 \cdot 7 \cdot 79^{2}$ |
|
Discriminant: | $\Delta$ | = | $-3854301349158055936$ | = | $-1 \cdot 2^{12} \cdot 7^{2} \cdot 79^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{23076099423}{15855616} \) | = | $2^{-12} \cdot 3^{3} \cdot 7^{-2} \cdot 13^{3} \cdot 73^{3} \cdot 79^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2549164928583446980826995298$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.070192566624833950996226759061$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9111471608662639$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.4013848734101355$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.3515780753533296452921620003$ |
|
Real period: | $\Omega$ | ≈ | $0.14047825797214376047344306350$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ ( 2^{2} \cdot 3 )\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.3535517403981844169903857930 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.353551740 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.140478 \cdot 6.351578 \cdot 96}{4^2} \\ & \approx 5.353551740\end{aligned}$$
Modular invariants
Modular form 87374.2.a.l
For more coefficients, see the Downloads section to the right.
Modular degree: | 1198080 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$79$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.51 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 632 = 2^{3} \cdot 79 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 241 & 240 \\ 566 & 247 \end{array}\right),\left(\begin{array}{rr} 608 & 629 \\ 459 & 630 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 626 & 627 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 403 & 398 \\ 242 & 555 \end{array}\right),\left(\begin{array}{rr} 625 & 8 \\ 624 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[632])$ is a degree-$1230428160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/632\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 6241 = 79^{2} \) |
$3$ | good | $2$ | \( 43687 = 7 \cdot 79^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 12482 = 2 \cdot 79^{2} \) |
$79$ | additive | $3200$ | \( 14 = 2 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 87374j
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1106e1, its twist by $-79$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-79}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.2.31554496.1 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.995686217814016.7 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.383054415794176.21 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 79 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ss | ord | nonsplit | ord | ord | ord | ord | ss | ord | ss | ord | ord | ord | ss | add |
$\lambda$-invariant(s) | 8 | 7,5 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 | - |
$\mu$-invariant(s) | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | - |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.