Show commands: SageMath
Rank
The elliptic curves in class 87360hk have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 87360hk do not have complex multiplication.Modular form 87360.2.a.hk
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 87360hk
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
87360.gs3 | 87360hk1 | \([0, 1, 0, -8888969185, -322573631800417]\) | \(296304326013275547793071733369/268420373544960000000\) | \(70364790402569994240000000\) | \([2]\) | \(82575360\) | \(4.2579\) | \(\Gamma_0(N)\)-optimal |
87360.gs2 | 87360hk2 | \([0, 1, 0, -8953194465, -317675722032225]\) | \(302773487204995438715379645049/8911747415025000000000000\) | \(2336161114364313600000000000000\) | \([2, 2]\) | \(165150720\) | \(4.6044\) | |
87360.gs4 | 87360hk3 | \([0, 1, 0, 2246805535, -1059409162032225]\) | \(4784981304203817469820354951/1852343836482910078035000000\) | \(-485580822670975979496407040000000\) | \([2]\) | \(330301440\) | \(4.9510\) | |
87360.gs1 | 87360hk4 | \([0, 1, 0, -21180798945, 737524970736543]\) | \(4008766897254067912673785886329/1423480510711669921875000000\) | \(373156875000000000000000000000000\) | \([2]\) | \(330301440\) | \(4.9510\) |