Properties

Label 87360.k
Number of curves $4$
Conductor $87360$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 87360.k have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 87360.k do not have complex multiplication.

Modular form 87360.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - q^{7} + q^{9} - q^{13} + q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 87360.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87360.k1 87360dv4 \([0, -1, 0, -12481, 533281]\) \(6562309703048/106640625\) \(3494400000000\) \([2]\) \(196608\) \(1.2062\)  
87360.k2 87360dv2 \([0, -1, 0, -1561, -10535]\) \(102766285504/46580625\) \(190794240000\) \([2, 2]\) \(98304\) \(0.85966\)  
87360.k3 87360dv1 \([0, -1, 0, -1316, -17934]\) \(3941317078336/2340975\) \(149822400\) \([2]\) \(49152\) \(0.51309\) \(\Gamma_0(N)\)-optimal
87360.k4 87360dv3 \([0, -1, 0, 5439, -84735]\) \(542939080312/404852175\) \(-13266196070400\) \([2]\) \(196608\) \(1.2062\)