Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-1079905x+431579903\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-1079905xz^2+431579903z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-87472332x+314884166256\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(611, 480)$ | $0.51155151944621024470981689192$ | $\infty$ |
| $(601, 0)$ | $0$ | $2$ |
Integral points
\( \left(601, 0\right) \), \((611,\pm 480)\), \((626,\pm 1125)\), \((797,\pm 8820)\), \((1091,\pm 23520)\), \((10211,\pm 1026720)\)
Invariants
| Conductor: | $N$ | = | \( 87360 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $1242686914560000$ | = | $2^{18} \cdot 3^{5} \cdot 5^{4} \cdot 7^{4} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( \frac{531301262949272089}{4740474375} \) | = | $3^{-5} \cdot 5^{-4} \cdot 7^{-4} \cdot 13^{-1} \cdot 809929^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0621349540250254131119230189$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0224141831851074489860748367$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9735305925746595$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.683751570672802$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.51155151944621024470981689192$ |
|
| Real period: | $\Omega$ | ≈ | $0.43687678014249382959883925445$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 160 $ = $ 2^{2}\cdot5\cdot2^{2}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.9393992277064259981932970383 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.939399228 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.436877 \cdot 0.511552 \cdot 160}{2^2} \\ & \approx 8.939399228\end{aligned}$$
Modular invariants
Modular form 87360.2.a.fy
For more coefficients, see the Downloads section to the right.
| Modular degree: | 983040 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{8}^{*}$ | additive | 1 | 6 | 18 | 0 |
| $3$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
| $5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $7$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 6821 & 6822 \\ 9542 & 4085 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 10913 & 8 \\ 10912 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 8737 & 8 \\ 2188 & 33 \end{array}\right),\left(\begin{array}{rr} 7288 & 3 \\ 7285 & 2 \end{array}\right),\left(\begin{array}{rr} 5884 & 1 \\ 9263 & 6 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 10914 & 10915 \end{array}\right),\left(\begin{array}{rr} 4096 & 9563 \\ 4099 & 4128 \end{array}\right),\left(\begin{array}{rr} 7801 & 8 \\ 9364 & 33 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$38954430627840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 39 = 3 \cdot 13 \) |
| $3$ | split multiplicative | $4$ | \( 29120 = 2^{6} \cdot 5 \cdot 7 \cdot 13 \) |
| $5$ | split multiplicative | $6$ | \( 5824 = 2^{6} \cdot 7 \cdot 13 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 12480 = 2^{6} \cdot 3 \cdot 5 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 6720 = 2^{6} \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 87360.fy
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1365.c1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{6}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{26}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{26})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.230604391120896.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | split | nonsplit | ss | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 2 | 1 | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.