Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-x^2-54881x-3688575\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-x^2z-54881xz^2-3688575z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-4445388x-2702307312\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-75, 0)$ | $0$ | $2$ | 
| $(263, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-187, 0\right) \), \( \left(-75, 0\right) \), \( \left(263, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 87360 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $4643168624640000$ | = | $2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{2} \cdot 13^{4} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{278944461825124}{70849130625} \) | = | $2^{2} \cdot 3^{-4} \cdot 5^{-4} \cdot 7^{-2} \cdot 13^{-4} \cdot 41161^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7158402580235604762511861305$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.79164401727696673036154330189$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.932414050605158$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8981540198641387$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 0$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.31775472871981748042470525479$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2\cdot2\cdot2\cdot2 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ | 
     | 
        
| Special value: | $ L(E,1)$ | ≈ | $1.2710189148792699216988210192 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | 
     | 
        
BSD formula
$$\begin{aligned} 1.271018915 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.317755 \cdot 1.000000 \cdot 64}{4^2} \\ & \approx 1.271018915\end{aligned}$$
Modular invariants
Modular form 87360.2.a.e
For more coefficients, see the Downloads section to the right.
| Modular degree: | 524288 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{6}^{*}$ | additive | -1 | 6 | 16 | 0 | 
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 | 
| $13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2Cs | 8.24.0.21 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 4201 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3641 & 8 \\ 3644 & 33 \end{array}\right),\left(\begin{array}{rr} 10917 & 2722 \\ 2738 & 21 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 10913 & 8 \\ 10912 & 9 \end{array}\right),\left(\begin{array}{rr} 8737 & 8 \\ 2188 & 33 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 7794 & 10915 \end{array}\right),\left(\begin{array}{rr} 10913 & 8188 \\ 18 & 2735 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 10916 & 10917 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$9738607656960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 1 \) | 
| $3$ | nonsplit multiplicative | $4$ | \( 29120 = 2^{6} \cdot 5 \cdot 7 \cdot 13 \) | 
| $5$ | nonsplit multiplicative | $6$ | \( 17472 = 2^{6} \cdot 3 \cdot 7 \cdot 13 \) | 
| $7$ | nonsplit multiplicative | $8$ | \( 12480 = 2^{6} \cdot 3 \cdot 5 \cdot 13 \) | 
| $13$ | nonsplit multiplicative | $14$ | \( 6720 = 2^{6} \cdot 3 \cdot 5 \cdot 7 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 87360.e
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 10920.j3, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-2}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.157351936.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.94758543360000.53 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 13 | 
|---|---|---|---|---|---|
| Reduction type | add | nonsplit | nonsplit | nonsplit | nonsplit | 
| $\lambda$-invariant(s) | - | 0 | 0 | 0 | 0 | 
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.