Show commands: SageMath
Rank
The elliptic curves in class 87360.ds have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 87360.ds do not have complex multiplication.Modular form 87360.2.a.ds
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 9 & 18 & 6 \\ 2 & 1 & 6 & 18 & 9 & 3 \\ 3 & 6 & 1 & 3 & 6 & 2 \\ 9 & 18 & 3 & 1 & 2 & 6 \\ 18 & 9 & 6 & 2 & 1 & 3 \\ 6 & 3 & 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 87360.ds
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
87360.ds1 | 87360bj5 | \([0, -1, 0, -54545505, -155033545503]\) | \(68463752473882049153689/1817088000000000\) | \(476338716672000000000\) | \([2]\) | \(8957952\) | \(3.0730\) | |
87360.ds2 | 87360bj6 | \([0, -1, 0, -52415585, -167699327775]\) | \(-60752633741424905775769/11197265625000000000\) | \(-2935296000000000000000000\) | \([2]\) | \(17915904\) | \(3.4196\) | |
87360.ds3 | 87360bj3 | \([0, -1, 0, -1168545, 139637025]\) | \(673163386034885929/357608625192000\) | \(93744955442331648000\) | \([2]\) | \(2985984\) | \(2.5237\) | |
87360.ds4 | 87360bj1 | \([0, -1, 0, -917985, 338839137]\) | \(326355561310674169/465699780\) | \(122080403128320\) | \([2]\) | \(995328\) | \(1.9744\) | \(\Gamma_0(N)\)-optimal |
87360.ds5 | 87360bj2 | \([0, -1, 0, -909665, 345273825]\) | \(-317562142497484249/12339342574650\) | \(-3234684619889049600\) | \([2]\) | \(1990656\) | \(2.3209\) | |
87360.ds6 | 87360bj4 | \([0, -1, 0, 4455775, 1087897377]\) | \(37321015309599759191/23553520979625000\) | \(-6174414203682816000000\) | \([2]\) | \(5971968\) | \(2.8703\) |