Properties

Label 87360.db
Number of curves $4$
Conductor $87360$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("db1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 87360.db have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 87360.db do not have complex multiplication.

Modular form 87360.2.a.db

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{7} + q^{9} - q^{13} - q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 87360.db

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
87360.db1 87360be4 \([0, -1, 0, -265585, -38559983]\) \(126449185587012304/33791748046875\) \(553644000000000000\) \([2]\) \(995328\) \(2.1129\)  
87360.db2 87360be2 \([0, -1, 0, -94225, 11160625]\) \(5646857395652944/2031631875\) \(33286256640000\) \([2]\) \(331776\) \(1.5636\)  
87360.db3 87360be1 \([0, -1, 0, -5045, 227157]\) \(-13870539341824/13420809675\) \(-13742909107200\) \([2]\) \(165888\) \(1.2170\) \(\Gamma_0(N)\)-optimal
87360.db4 87360be3 \([0, -1, 0, 41995, -3926475]\) \(7998456195055616/11086576921875\) \(-11352654768000000\) \([2]\) \(497664\) \(1.7664\)