Properties

Label 86700bi
Number of curves $2$
Conductor $86700$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 86700bi have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 86700bi do not have complex multiplication.

Modular form 86700.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} + 3 q^{11} + 4 q^{13} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 86700bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
86700.bm1 86700bi1 \([0, 1, 0, -45758, 6785613]\) \(-1755904/2295\) \(-13848930213750000\) \([]\) \(497664\) \(1.7902\) \(\Gamma_0(N)\)-optimal
86700.bm2 86700bi2 \([0, 1, 0, 387742, -130633887]\) \(1068359936/1842375\) \(-11117613421593750000\) \([]\) \(1492992\) \(2.3395\)