Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-17708x+903912\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-17708xz^2+903912z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1434375x+654648750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(589/9, 3916/27)$ | $6.2924229261096820017961591384$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 86700 \) | = | $2^{2} \cdot 3 \cdot 5^{2} \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $7022700000000$ | = | $2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{21250000}{243} \) | = | $2^{4} \cdot 3^{-5} \cdot 5^{7} \cdot 17$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2781187237645740582593607782$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.72914022890749241112755596124$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0621668854126116$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.602306193233303$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.2924229261096820017961591384$ |
|
| Real period: | $\Omega$ | ≈ | $0.74945382944257610880991696623$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.7158804584451613038424510718 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.715880458 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.749454 \cdot 6.292423 \cdot 1}{1^2} \\ & \approx 4.715880458\end{aligned}$$
Modular invariants
Modular form 86700.2.a.j
For more coefficients, see the Downloads section to the right.
| Modular degree: | 162000 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $3$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $5$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $17$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5S4 | 5.5.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 60.10.0.a.1, level \( 60 = 2^{2} \cdot 3 \cdot 5 \), index $10$, genus $0$, and generators
$\left(\begin{array}{rr} 3 & 16 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 51 & 10 \\ 50 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 35 & 56 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 25 & 56 \end{array}\right),\left(\begin{array}{rr} 31 & 52 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 4 & 9 \\ 7 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[60])$ is a degree-$221184$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/60\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 21675 = 3 \cdot 5^{2} \cdot 17^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 28900 = 2^{2} \cdot 5^{2} \cdot 17^{2} \) |
| $5$ | additive | $10$ | \( 1156 = 2^{2} \cdot 17^{2} \) |
| $17$ | additive | $66$ | \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 86700.j consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 86700.bp1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.3.86700.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.6.90202680000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | add | ss | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 1 | - | 1,1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0,0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.