Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-23x+20\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-23xz^2+20z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-29835x+1388934\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(0, 4)$ | $0.46550926222445360873762100508$ | $\infty$ |
$(1, -1)$ | $0$ | $2$ |
Integral points
\( \left(0, 4\right) \), \( \left(0, -5\right) \), \( \left(1, -1\right) \), \( \left(5, 5\right) \), \( \left(5, -11\right) \), \( \left(18, 67\right) \), \( \left(18, -86\right) \)
Invariants
Conductor: | $N$ | = | \( 867 \) | = | $3 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $397953$ | = | $3^{4} \cdot 17^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{274625}{81} \) | = | $3^{-4} \cdot 5^{3} \cdot 13^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.21973633927667040674962551742$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.92803967529072442681200917189$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9424416881856162$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.107565516475448$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.46550926222445360873762100508$ |
|
Real period: | $\Omega$ | ≈ | $2.7849176519372060399688690864$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.2964049615091464710222585940 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.296404962 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.784918 \cdot 0.465509 \cdot 4}{2^2} \\ & \approx 1.296404962\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 96 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$17$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.84 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 816 = 2^{4} \cdot 3 \cdot 17 \), index $192$, genus $5$, and generators
$\left(\begin{array}{rr} 613 & 16 \\ 620 & 435 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 801 & 16 \\ 800 & 17 \end{array}\right),\left(\begin{array}{rr} 613 & 16 \\ 8 & 129 \end{array}\right),\left(\begin{array}{rr} 11 & 12 \\ 716 & 707 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 444 & 5 \\ 115 & 68 \end{array}\right),\left(\begin{array}{rr} 15 & 8 \\ 176 & 239 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 64 & 205 \end{array}\right)$.
The torsion field $K:=\Q(E[816])$ is a degree-$481296384$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/816\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 17 \) |
$3$ | nonsplit multiplicative | $4$ | \( 289 = 17^{2} \) |
$17$ | additive | $82$ | \( 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 867.a
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.78608.2 | \(\Z/4\Z\) | not in database |
$4$ | 4.2.19652.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.6179217664.3 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.4275897935643.3 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | nonsplit | ss | ord | ord | ord | add | ord | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | 1 | 1,1 | 3 | 1 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.