Properties

Label 8624.t
Number of curves $2$
Conductor $8624$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8624.t have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8624.t do not have complex multiplication.

Modular form 8624.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{9} + q^{11} - 5 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8624.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8624.t1 8624z2 \([0, 1, 0, -90848, -10569868]\) \(413160293352625/42592\) \(8548384768\) \([]\) \(17280\) \(1.3355\)  
8624.t2 8624z1 \([0, 1, 0, -1248, -11404]\) \(1071912625/360448\) \(72343355392\) \([]\) \(5760\) \(0.78614\) \(\Gamma_0(N)\)-optimal