Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-261x+3949\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-261xz^2+3949z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-21168x+2815344\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(12, 49)$ | $1.2187557895475574877186097400$ | $\infty$ |
Integral points
\((12,\pm 49)\)
Invariants
Conductor: | $N$ | = | \( 8624 \) | = | $2^{4} \cdot 7^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-5300793344$ | = | $-1 \cdot 2^{12} \cdot 7^{6} \cdot 11 $ |
|
j-invariant: | $j$ | = | \( -\frac{4096}{11} \) | = | $-1 \cdot 2^{12} \cdot 11^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.55337345775214870998051456511$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1127287973354532519893939281$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8254556483942886$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.314939239620894$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.2187557895475574877186097400$ |
|
Real period: | $\Omega$ | ≈ | $1.1992900645760733408432948048$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.9232834190979069396929992911 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.923283419 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.199290 \cdot 1.218756 \cdot 2}{1^2} \\ & \approx 2.923283419\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 2880 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.4.1 | 25.60.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7700 = 2^{2} \cdot 5^{2} \cdot 7 \cdot 11 \), index $1200$, genus $37$, and generators
$\left(\begin{array}{rr} 7651 & 50 \\ 7650 & 51 \end{array}\right),\left(\begin{array}{rr} 2162 & 6559 \\ 2009 & 6061 \end{array}\right),\left(\begin{array}{rr} 3816 & 2205 \\ 35 & 4586 \end{array}\right),\left(\begin{array}{rr} 38 & 41 \\ 5141 & 4939 \end{array}\right),\left(\begin{array}{rr} 1 & 50 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5499 & 0 \\ 0 & 7699 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 50 & 1 \end{array}\right),\left(\begin{array}{rr} 2799 & 1050 \\ 2800 & 1049 \end{array}\right),\left(\begin{array}{rr} 7384 & 6055 \\ 6223 & 6313 \end{array}\right),\left(\begin{array}{rr} 3849 & 0 \\ 0 & 7699 \end{array}\right)$.
The torsion field $K:=\Q(E[7700])$ is a degree-$638668800000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7700\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 539 = 7^{2} \cdot 11 \) |
$7$ | additive | $26$ | \( 176 = 2^{4} \cdot 11 \) |
$11$ | nonsplit multiplicative | $12$ | \( 784 = 2^{4} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5 and 25.
Its isogeny class 8624.j
consists of 3 curves linked by isogenies of
degrees dividing 25.
Twists
The minimal quadratic twist of this elliptic curve is 11.a3, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/5\Z\) | 2.2.28.1-121.1-b3 |
$3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.10624768.1 | \(\Z/10\Z\) | not in database |
$8$ | 8.2.19681203370752.2 | \(\Z/3\Z\) | not in database |
$10$ | 10.10.3689195226078208.1 | \(\Z/25\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.13659169101512704.3 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$16$ | deg 16 | \(\Z/15\Z\) | not in database |
$20$ | 20.0.415349164310249030654178848000000000000000.2 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ord | add | nonsplit | ord | ord | ss | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 7 | 1 | - | 1 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.