Properties

Label 86151a
Number of curves $4$
Conductor $86151$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 86151a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(13\)\(1 + T\)
\(47\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 86151a do not have complex multiplication.

Modular form 86151.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - 2 q^{5} - q^{6} - 4 q^{7} - 3 q^{8} + q^{9} - 2 q^{10} - 4 q^{11} + q^{12} - q^{13} - 4 q^{14} + 2 q^{15} - q^{16} + 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 86151a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
86151.e4 86151a1 \([1, 1, 0, 1059, 28680]\) \(12167/39\) \(-420389397831\) \([2]\) \(105984\) \(0.91356\) \(\Gamma_0(N)\)-optimal
86151.e3 86151a2 \([1, 1, 0, -9986, 326895]\) \(10218313/1521\) \(16395186515409\) \([2, 2]\) \(211968\) \(1.2601\)  
86151.e2 86151a3 \([1, 1, 0, -43121, -3139026]\) \(822656953/85683\) \(923595507034707\) \([2]\) \(423936\) \(1.6067\)  
86151.e1 86151a4 \([1, 1, 0, -153571, 23099476]\) \(37159393753/1053\) \(11350513741437\) \([2]\) \(423936\) \(1.6067\)