Show commands: SageMath
Rank
The elliptic curves in class 86151a have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 86151a do not have complex multiplication.Modular form 86151.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 86151a
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 86151.e4 | 86151a1 | \([1, 1, 0, 1059, 28680]\) | \(12167/39\) | \(-420389397831\) | \([2]\) | \(105984\) | \(0.91356\) | \(\Gamma_0(N)\)-optimal |
| 86151.e3 | 86151a2 | \([1, 1, 0, -9986, 326895]\) | \(10218313/1521\) | \(16395186515409\) | \([2, 2]\) | \(211968\) | \(1.2601\) | |
| 86151.e2 | 86151a3 | \([1, 1, 0, -43121, -3139026]\) | \(822656953/85683\) | \(923595507034707\) | \([2]\) | \(423936\) | \(1.6067\) | |
| 86151.e1 | 86151a4 | \([1, 1, 0, -153571, 23099476]\) | \(37159393753/1053\) | \(11350513741437\) | \([2]\) | \(423936\) | \(1.6067\) |