Properties

Label 858f
Number of curves $1$
Conductor $858$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 858f1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 858f do not have complex multiplication.

Modular form 858.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - 3 q^{5} - q^{6} + q^{7} + q^{8} + q^{9} - 3 q^{10} - q^{11} - q^{12} + q^{13} + q^{14} + 3 q^{15} + q^{16} - 8 q^{17} + q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 858f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
858.e1 858f1 \([1, 1, 1, -572, 118685]\) \(-20699471212993/6097712265216\) \(-6097712265216\) \([]\) \(2640\) \(1.1324\) \(\Gamma_0(N)\)-optimal