Properties

Label 858d
Number of curves $2$
Conductor $858$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 858d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 858d do not have complex multiplication.

Modular form 858.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + 3 q^{5} - q^{6} - q^{7} - q^{8} + q^{9} - 3 q^{10} + q^{11} + q^{12} + q^{13} + q^{14} + 3 q^{15} + q^{16} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 858d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
858.d1 858d1 \([1, 0, 1, -103987, 12897998]\) \(-124352595912593543977/103332962304\) \(-103332962304\) \([3]\) \(3120\) \(1.4168\) \(\Gamma_0(N)\)-optimal
858.d2 858d2 \([1, 0, 1, -80722, 18827108]\) \(-58169016237585194137/119573538788081664\) \(-119573538788081664\) \([]\) \(9360\) \(1.9661\)