Properties

Label 85698.e
Number of curves $4$
Conductor $85698$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 85698.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 85698.e do not have complex multiplication.

Modular form 85698.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} - 3 q^{11} + 2 q^{13} + 2 q^{14} + q^{16} - 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 85698.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
85698.e1 85698j3 \([1, -1, 0, -569832, -165422656]\) \(-189613868625/128\) \(-13813524874368\) \([]\) \(498960\) \(1.8371\)  
85698.e2 85698j4 \([1, -1, 0, -450807, -236547235]\) \(-1159088625/2097152\) \(-18331984114873270272\) \([]\) \(1496880\) \(2.3864\)  
85698.e3 85698j2 \([1, -1, 0, -22317, 1350413]\) \(-140625/8\) \(-69930969676488\) \([]\) \(213840\) \(1.4135\)  
85698.e4 85698j1 \([1, -1, 0, 1488, 3050]\) \(3375/2\) \(-215836326162\) \([]\) \(71280\) \(0.86416\) \(\Gamma_0(N)\)-optimal