Properties

Label 8568.h
Number of curves $1$
Conductor $8568$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 8568.h1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8568.h do not have complex multiplication.

Modular form 8568.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{7} + q^{11} - q^{13} + q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 8568.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8568.h1 8568f1 \([0, 0, 0, -856092, -304879948]\) \(-371806976516936704/89266779\) \(-16659323364096\) \([]\) \(43008\) \(1.9150\) \(\Gamma_0(N)\)-optimal