Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
855.a1 |
855a4 |
855.a |
855a |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 19 \) |
\( 3^{8} \cdot 5^{3} \cdot 19^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$1.303446$ |
$23977812996389881/146611125$ |
$1.09826$ |
$6.56301$ |
$[1, -1, 1, -54068, 4852482]$ |
\(y^2+xy+y=x^3-x^2-54068x+4852482\) |
2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 12.12.0-4.c.1.1, 20.12.0.g.1, $\ldots$ |
$[]$ |
855.a2 |
855a3 |
855.a |
855a |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 19 \) |
\( 3^{8} \cdot 5^{12} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$1.303446$ |
$209595169258201/41748046875$ |
$0.98100$ |
$5.86095$ |
$[1, -1, 1, -11138, -363594]$ |
\(y^2+xy+y=x^3-x^2-11138x-363594\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.z.1, 76.12.0.?, $\ldots$ |
$[]$ |
855.a3 |
855a2 |
855.a |
855a |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 19 \) |
\( 3^{10} \cdot 5^{6} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1140$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$1152$ |
$0.956871$ |
$6189976379881/456890625$ |
$0.95560$ |
$5.33922$ |
$[1, -1, 1, -3443, 73482]$ |
\(y^2+xy+y=x^3-x^2-3443x+73482\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.b.1, 60.24.0-20.b.1.2, 76.12.0.?, $\ldots$ |
$[]$ |
855.a4 |
855a1 |
855.a |
855a |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 19 \) |
\( - 3^{14} \cdot 5^{3} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$576$ |
$0.610298$ |
$1256216039/15582375$ |
$0.94875$ |
$4.52671$ |
$[1, -1, 1, 202, 4956]$ |
\(y^2+xy+y=x^3-x^2+202x+4956\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.z.1, 60.12.0-4.c.1.2, $\ldots$ |
$[]$ |
855.b1 |
855b2 |
855.b |
855b |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19 \) |
\( 3^{8} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$0.181618857$ |
$1$ |
|
$12$ |
$384$ |
$0.559646$ |
$90458382169/2671875$ |
$1.09032$ |
$4.71328$ |
$[1, -1, 1, -842, 9366]$ |
\(y^2+xy+y=x^3-x^2-842x+9366\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.? |
$[(26, 54)]$ |
855.b2 |
855b1 |
855.b |
855b |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19 \) |
\( - 3^{7} \cdot 5^{3} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$0.363237715$ |
$1$ |
|
$9$ |
$192$ |
$0.213072$ |
$357911/135375$ |
$0.95197$ |
$3.83058$ |
$[1, -1, 1, 13, 474]$ |
\(y^2+xy+y=x^3-x^2+13x+474\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[(2, 21)]$ |
855.c1 |
855c2 |
855.c |
855c |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19 \) |
\( 3^{16} \cdot 5^{2} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$640$ |
$0.667949$ |
$48587168449/28048275$ |
$1.03180$ |
$4.62122$ |
$[1, -1, 0, -684, 513]$ |
\(y^2+xy=x^3-x^2-684x+513\) |
2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.? |
$[]$ |
855.c2 |
855c1 |
855.c |
855c |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 19 \) |
\( - 3^{11} \cdot 5 \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1140$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$320$ |
$0.321375$ |
$756058031/438615$ |
$1.00322$ |
$4.00458$ |
$[1, -1, 0, 171, 0]$ |
\(y^2+xy=x^3-x^2+171x\) |
2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? |
$[]$ |