Properties

Label 85063a
Number of curves $1$
Conductor $85063$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 85063a1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11\)\(1\)
\(19\)\(1 + T\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 85063a do not have complex multiplication.

Modular form 85063.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + 4 q^{5} - 2 q^{7} - 3 q^{9} + 4 q^{16} - 5 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 85063a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
85063.b1 85063a1 \([0, 0, 1, -461978, 88370081]\) \(6155048569503744/1657637226773\) \(2936605463099202653\) \([]\) \(1123200\) \(2.2518\) \(\Gamma_0(N)\)-optimal