Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3+x^2-18553x-976915\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3+x^2z-18553xz^2-976915z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-24045120x-45290394864\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(853/4, 17541/8)$ | $4.6658060911202557697419408193$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 85063 \) | = | $11^{2} \cdot 19 \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $1657637226773$ | = | $11^{9} \cdot 19 \cdot 37 $ |
|
| j-invariant: | $j$ | = | \( \frac{398688256000}{935693} \) | = | $2^{18} \cdot 5^{3} \cdot 11^{-3} \cdot 19^{-1} \cdot 23^{3} \cdot 37^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2248627968919617169694122446$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.025915160492776444938440455618$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.842639358105597$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.620675134261663$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.6658060911202557697419408193$ |
|
| Real period: | $\Omega$ | ≈ | $0.40912433689105469573464526072$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.8177896461836371296517089491 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.817789646 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.409124 \cdot 4.665806 \cdot 2}{1^2} \\ & \approx 3.817789646\end{aligned}$$
Modular invariants
Modular form 85063.2.a.a
For more coefficients, see the Downloads section to the right.
| Modular degree: | 155520 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $11$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $37$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 46398 = 2 \cdot 3 \cdot 11 \cdot 19 \cdot 37 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 8435 & 46392 \\ 25305 & 46379 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 7734 & 38671 \\ 38665 & 30933 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 46393 & 6 \\ 46392 & 7 \end{array}\right),\left(\begin{array}{rr} 4885 & 6 \\ 14655 & 19 \end{array}\right),\left(\begin{array}{rr} 11287 & 6 \\ 33861 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[46398])$ is a degree-$53304683046912000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/46398\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $11$ | additive | $72$ | \( 703 = 19 \cdot 37 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 4477 = 11^{2} \cdot 37 \) |
| $37$ | split multiplicative | $38$ | \( 2299 = 11^{2} \cdot 19 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 85063.a
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 7733.c2, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-11}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.3.30932.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.6.7398846429392.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.8777344004768097.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.10524674864.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.96541815695291558976180126726806717366622497979.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.6.1368862912876963649788227441512259749377291253495540355072.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | ss | ord | add | ord | ord | nonsplit | ss | ss | ord | split | ord | ord | ord |
| $\lambda$-invariant(s) | 7,2 | 5 | 5,1 | 1 | - | 1 | 1 | 1 | 1,3 | 1,1 | 1 | 2 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0,0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.