Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-12943449x+17746038645\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-12943449xz^2+17746038645z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-16774709931x+828210799678374\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(9077/16, 6566679/64)$ | $5.9348489138472797689531140820$ | $\infty$ |
$(8963/4, -8967/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 84966 \) | = | $2 \cdot 3 \cdot 7^{2} \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $2652046307362131781122$ | = | $2 \cdot 3^{4} \cdot 7^{14} \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{84448510979617}{933897762} \) | = | $2^{-1} \cdot 3^{-4} \cdot 7^{-8} \cdot 73^{3} \cdot 601^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9252365302534578562275307959$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.53567478369769316355008711524$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0530860389430399$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.351706567228181$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.9348489138472797689531140820$ |
|
Real period: | $\Omega$ | ≈ | $0.14456214030069076091649598883$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.8636356907759410592619682630 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.863635691 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.144562 \cdot 5.934849 \cdot 32}{2^2} \\ & \approx 6.863635691\end{aligned}$$
Modular invariants
Modular form 84966.2.a.cv
For more coefficients, see the Downloads section to the right.
Modular degree: | 7864320 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.48.0.217 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1904 = 2^{4} \cdot 7 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1735 & 1360 \\ 1326 & 1225 \end{array}\right),\left(\begin{array}{rr} 543 & 544 \\ 1768 & 543 \end{array}\right),\left(\begin{array}{rr} 1119 & 0 \\ 0 & 1903 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 1806 & 1891 \end{array}\right),\left(\begin{array}{rr} 1889 & 16 \\ 1888 & 17 \end{array}\right),\left(\begin{array}{rr} 1548 & 425 \\ 731 & 1514 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 1900 & 1901 \end{array}\right)$.
The torsion field $K:=\Q(E[1904])$ is a degree-$20214448128$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1904\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 14161 = 7^{2} \cdot 17^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 28322 = 2 \cdot 7^{2} \cdot 17^{2} \) |
$7$ | additive | $32$ | \( 1734 = 2 \cdot 3 \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 84966.cv
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 42.a2, its twist by $-119$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{119}) \) | \(\Z/8\Z\) | not in database |
$2$ | \(\Q(\sqrt{238}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{119})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.841100226985984.127 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.841100226985984.128 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | ord | add | ord | ord | add | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 11 | 1 | 1 | - | 1 | 1 | - | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | 0 | - | 0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.