Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-66150x+9261000\)
|
(homogenize, simplify) |
\(y^2z=x^3-66150xz^2+9261000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-66150x+9261000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(190306/169, 81100846/2197)$ | $11.876559771316273407962612738$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 8467200 \) | = | $2^{8} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $-18525482136000000$ | = | $-1 \cdot 2^{9} \cdot 3^{9} \cdot 5^{6} \cdot 7^{6} $ |
|
j-invariant: | $j$ | = | \( -1728 \) | = | $-1 \cdot 2^{6} \cdot 3^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8242843670026465507665221347$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2972092656631015396958919224$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.858990633771995$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $11.876559771316273407962612738$ |
|
Real period: | $\Omega$ | ≈ | $0.35905972454996751618650283923$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $8.5287885601800926496858923725 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.528788560 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.359060 \cdot 11.876560 \cdot 2}{1^2} \\ & \approx 8.528788560\end{aligned}$$
Modular invariants
Modular form 8467200.2.a.tt
For more coefficients, see the Downloads section to the right.
Modular degree: | 61585920 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III$ | additive | -1 | 8 | 9 | 0 |
$3$ | $1$ | $IV^{*}$ | additive | 1 | 3 | 9 | 0 |
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3Ns | 3.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 24.24.1.ck.1, level \( 24 = 2^{3} \cdot 3 \), index $24$, genus $1$, and generators
$\left(\begin{array}{rr} 19 & 6 \\ 18 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 15 \\ 9 & 14 \end{array}\right),\left(\begin{array}{rr} 2 & 3 \\ 3 & 5 \end{array}\right),\left(\begin{array}{rr} 21 & 2 \\ 4 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 19 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[24])$ is a degree-$3072$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 33075 = 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
$3$ | additive | $2$ | \( 4480 = 2^{7} \cdot 5 \cdot 7 \) |
$5$ | additive | $14$ | \( 338688 = 2^{8} \cdot 3^{3} \cdot 7^{2} \) |
$7$ | additive | $26$ | \( 172800 = 2^{8} \cdot 3^{3} \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 8467200.tt consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 6912.a1, its twist by $140$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.