Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-7350x-343000\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-7350xz^2-343000z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-7350x-343000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 8467200 \) | = | $2^{8} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-25412184000000$ | = | $-1 \cdot 2^{9} \cdot 3^{3} \cdot 5^{6} \cdot 7^{6} $ |
|
| j-invariant: | $j$ | = | \( -1728 \) | = | $-1 \cdot 2^{6} \cdot 3^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2749782226685917050688995163$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2972092656631015396958919224$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.4457638666799237$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.25111384713790190918145017781$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.50222769427580381836290035562 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.502227694 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.251114 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 0.502227694\end{aligned}$$
Modular invariants
Modular form 8467200.2.a.ge
For more coefficients, see the Downloads section to the right.
| Modular degree: | 20528640 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III$ | additive | -1 | 8 | 9 | 0 |
| $3$ | $1$ | $II$ | additive | -1 | 3 | 3 | 0 |
| $5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3Ns | 3.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 24.24.1.ck.1, level \( 24 = 2^{3} \cdot 3 \), index $24$, genus $1$, and generators
$\left(\begin{array}{rr} 19 & 6 \\ 18 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 6 \\ 15 & 23 \end{array}\right),\left(\begin{array}{rr} 2 & 3 \\ 3 & 5 \end{array}\right),\left(\begin{array}{rr} 21 & 2 \\ 4 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 7 & 21 \end{array}\right)$.
The torsion field $K:=\Q(E[24])$ is a degree-$3072$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 33075 = 3^{3} \cdot 5^{2} \cdot 7^{2} \) |
| $3$ | additive | $2$ | \( 313600 = 2^{8} \cdot 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $14$ | \( 338688 = 2^{8} \cdot 3^{3} \cdot 7^{2} \) |
| $7$ | additive | $26$ | \( 172800 = 2^{8} \cdot 3^{3} \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 8467200.ge consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 6912.a1, its twist by $-420$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.