Properties

Label 8450h
Number of curves $2$
Conductor $8450$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8450h have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8450h do not have complex multiplication.

Modular form 8450.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} + 3 q^{7} - q^{8} - 2 q^{9} + q^{12} - 3 q^{14} + q^{16} + 3 q^{17} + 2 q^{18} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 8450h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8450.h2 8450h1 \([1, 0, 1, 74, -752]\) \(1331/8\) \(-274625000\) \([]\) \(2592\) \(0.30114\) \(\Gamma_0(N)\)-optimal
8450.h1 8450h2 \([1, 0, 1, -8051, 281998]\) \(-1680914269/32768\) \(-1124864000000\) \([]\) \(12960\) \(1.1059\)