Properties

Label 8450.d
Number of curves $4$
Conductor $8450$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8450.d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8450.d do not have complex multiplication.

Modular form 8450.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 2 q^{7} - q^{8} - 2 q^{9} + 3 q^{11} - q^{12} - 2 q^{14} + q^{16} + 3 q^{17} + 2 q^{18} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 15 & 5 \\ 3 & 1 & 5 & 15 \\ 15 & 5 & 1 & 3 \\ 5 & 15 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8450.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8450.d1 8450d4 \([1, 1, 0, -530325, -148872875]\) \(-349938025/8\) \(-377094453125000\) \([]\) \(64800\) \(1.9104\)  
8450.d2 8450d3 \([1, 1, 0, -2200, -469750]\) \(-25/2\) \(-94273613281250\) \([]\) \(21600\) \(1.3611\)  
8450.d3 8450d1 \([1, 1, 0, -510, 5140]\) \(-121945/32\) \(-3861447200\) \([]\) \(4320\) \(0.55638\) \(\Gamma_0(N)\)-optimal
8450.d4 8450d2 \([1, 1, 0, 3715, -37955]\) \(46969655/32768\) \(-3954121932800\) \([]\) \(12960\) \(1.1057\)