Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+74x-752\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+74xz^2-752z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+96525x-35363250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 8450 \) | = | $2 \cdot 5^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-274625000$ | = | $-1 \cdot 2^{3} \cdot 5^{6} \cdot 13^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{1331}{8} \) | = | $2^{-3} \cdot 11^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.30114085862736894210099535293$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1448154369550654292127561741$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9357683713670925$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.9622463168571476$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.87012293922549889722865640970$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.7402458784509977944573128194 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.740245878 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.870123 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 1.740245878\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 2592 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$13$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3Ns | 3.6.0.1 |
$5$ | 5B | 5.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $576$, genus $17$, and generators
$\left(\begin{array}{rr} 16 & 375 \\ 375 & 1306 \end{array}\right),\left(\begin{array}{rr} 781 & 0 \\ 0 & 781 \end{array}\right),\left(\begin{array}{rr} 481 & 480 \\ 1080 & 481 \end{array}\right),\left(\begin{array}{rr} 1227 & 1397 \\ 10 & 873 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 1500 & 1 \end{array}\right),\left(\begin{array}{rr} 1301 & 0 \\ 0 & 1301 \end{array}\right),\left(\begin{array}{rr} 1 & 312 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 781 & 150 \\ 795 & 691 \end{array}\right),\left(\begin{array}{rr} 1256 & 1485 \\ 1035 & 1061 \end{array}\right),\left(\begin{array}{rr} 521 & 150 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1111 & 930 \\ 420 & 631 \end{array}\right),\left(\begin{array}{rr} 1081 & 0 \\ 0 & 241 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 30 & 1 \end{array}\right),\left(\begin{array}{rr} 299 & 1530 \\ 270 & 263 \end{array}\right),\left(\begin{array}{rr} 361 & 1410 \\ 750 & 181 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 1080 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$1610219520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 325 = 5^{2} \cdot 13 \) |
$3$ | good | $2$ | \( 4225 = 5^{2} \cdot 13^{2} \) |
$5$ | additive | $14$ | \( 338 = 2 \cdot 13^{2} \) |
$13$ | additive | $50$ | \( 50 = 2 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 8450.h
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 338.d2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.104.1 | \(\Z/2\Z\) | not in database |
$4$ | 4.2.164775.1 | \(\Z/3\Z\) | not in database |
$4$ | 4.0.494325.1 | \(\Z/3\Z\) | not in database |
$4$ | 4.0.54925.1 | \(\Z/5\Z\) | not in database |
$6$ | 6.0.1124864.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.0.244357205625.4 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$8$ | 8.0.27150800625.1 | \(\Z/15\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/10\Z\) | not in database |
$16$ | deg 16 | \(\Z/3\Z \oplus \Z/15\Z\) | not in database |
$20$ | 20.4.102371786028181514000000000000000.2 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | ord | add | ord | ss | add | ord | ord | ord | ss | ss | ord | ss | ord | ord |
$\lambda$-invariant(s) | 2 | 2 | - | 0 | 0,0 | - | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0,0 | 0 | 0 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0,0 | - | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.