Show commands: SageMath
Rank
The elliptic curves in class 840e have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 840e do not have complex multiplication.Modular form 840.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 840e
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
840.b4 | 840e1 | \([0, -1, 0, 9, 0]\) | \(4499456/2835\) | \(-45360\) | \([2]\) | \(64\) | \(-0.41743\) | \(\Gamma_0(N)\)-optimal |
840.b3 | 840e2 | \([0, -1, 0, -36, 36]\) | \(20720464/11025\) | \(2822400\) | \([2, 2]\) | \(128\) | \(-0.070861\) | |
840.b2 | 840e3 | \([0, -1, 0, -336, -2244]\) | \(4108974916/36015\) | \(36879360\) | \([2]\) | \(256\) | \(0.27571\) | |
840.b1 | 840e4 | \([0, -1, 0, -456, 3900]\) | \(10262905636/13125\) | \(13440000\) | \([2]\) | \(256\) | \(0.27571\) |