Show commands: SageMath
Rank
The elliptic curves in class 840a have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 840a do not have complex multiplication.Modular form 840.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 840a
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 840.a3 | 840a1 | \([0, -1, 0, -316, -2060]\) | \(13674725584/945\) | \(241920\) | \([2]\) | \(192\) | \(0.086753\) | \(\Gamma_0(N)\)-optimal |
| 840.a2 | 840a2 | \([0, -1, 0, -336, -1764]\) | \(4108974916/893025\) | \(914457600\) | \([2, 2]\) | \(384\) | \(0.43333\) | |
| 840.a1 | 840a3 | \([0, -1, 0, -1736, 26796]\) | \(282678688658/18600435\) | \(38093690880\) | \([2]\) | \(768\) | \(0.77990\) | |
| 840.a4 | 840a4 | \([0, -1, 0, 744, -11700]\) | \(22208984782/40516875\) | \(-82978560000\) | \([2]\) | \(768\) | \(0.77990\) |