Properties

Label 83942.c
Number of curves $3$
Conductor $83942$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 83942.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(19\)\(1 + T\)
\(47\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 83942.c do not have complex multiplication.

Modular form 83942.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} - 2 q^{9} + 6 q^{11} + q^{12} - 5 q^{13} + q^{14} + q^{16} + 3 q^{17} + 2 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 83942.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
83942.c1 83942a3 \([1, 0, 1, -188916, 254207730]\) \(-69173457625/2550136832\) \(-27488474030541897728\) \([]\) \(1907712\) \(2.4102\)  
83942.c2 83942a1 \([1, 0, 1, -34286, -2447144]\) \(-413493625/152\) \(-1638440730008\) \([]\) \(211968\) \(1.3116\) \(\Gamma_0(N)\)-optimal
83942.c3 83942a2 \([1, 0, 1, 20939, -9286208]\) \(94196375/3511808\) \(-37854534626104832\) \([]\) \(635904\) \(1.8609\)