Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-34628x-8690713\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-34628xz^2-8690713z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-554043x-556759658\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(261, -131)$ | $0$ | $2$ |
Integral points
\( \left(261, -131\right) \)
Invariants
Conductor: | $N$ | = | \( 83790 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-30035981703168000$ | = | $-1 \cdot 2^{14} \cdot 3^{8} \cdot 5^{3} \cdot 7^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( -\frac{53540005609}{350208000} \) | = | $-1 \cdot 2^{-14} \cdot 3^{-2} \cdot 5^{-3} \cdot 19^{-1} \cdot 3769^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8452046930685020439610571932$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.32294347420679054571075820302$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9654650768778101$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.012031684281372$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.15583922246672566239201809848$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 112 $ = $ ( 2 \cdot 7 )\cdot2^{2}\cdot1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $4.3634982290683185469765067575 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 4.363498229 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.155839 \cdot 1.000000 \cdot 112}{2^2} \\ & \approx 4.363498229\end{aligned}$$
Modular invariants
Modular form 83790.2.a.cy
For more coefficients, see the Downloads section to the right.
Modular degree: | 967680 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 914 & 1 \\ 1823 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 761 & 4 \\ 1522 & 9 \end{array}\right),\left(\begin{array}{rr} 289 & 1996 \\ 1424 & 855 \end{array}\right),\left(\begin{array}{rr} 1562 & 1 \\ 359 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2277 & 4 \\ 2276 & 5 \end{array}\right),\left(\begin{array}{rr} 1141 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[2280])$ is a degree-$363095654400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 41895 = 3^{2} \cdot 5 \cdot 7^{2} \cdot 19 \) |
$3$ | additive | $8$ | \( 1862 = 2 \cdot 7^{2} \cdot 19 \) |
$5$ | nonsplit multiplicative | $6$ | \( 16758 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
$7$ | additive | $26$ | \( 855 = 3^{2} \cdot 5 \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 83790dy
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 570b1, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-95}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.2681280.4 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 19 |
---|---|---|---|---|---|
Reduction type | split | add | nonsplit | add | nonsplit |
$\lambda$-invariant(s) | 6 | - | 0 | - | 0 |
$\mu$-invariant(s) | 0 | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.