Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+4116726x-6837137420\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+4116726xz^2-6837137420z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+65867613x-437510927266\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2151, 108317)$ | $3.5155612498124729437811859189$ | $\infty$ |
$(1220, -610)$ | $0$ | $2$ |
Integral points
\( \left(1220, -610\right) \), \( \left(2151, 108317\right) \), \( \left(2151, -110468\right) \), \( \left(10436, 1077662\right) \), \( \left(10436, -1088098\right) \)
Invariants
Conductor: | $N$ | = | \( 83790 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-24653533781960294400000$ | = | $-1 \cdot 2^{20} \cdot 3^{11} \cdot 5^{5} \cdot 7^{6} \cdot 19^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{89962967236397039}{287450726400000} \) | = | $2^{-20} \cdot 3^{-5} \cdot 5^{-5} \cdot 19^{-2} \cdot 29^{3} \cdot 15451^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9797977933767266380515569585$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4575365745150151398012579683$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0281324592856305$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.188228360359683$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.5155612498124729437811859189$ |
|
Real period: | $\Omega$ | ≈ | $0.061101691238860457935989250131$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 80 $ = $ 2\cdot2\cdot5\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.2961347603468819957800876656 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.296134760 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.061102 \cdot 3.515561 \cdot 80}{2^2} \\ & \approx 4.296134760\end{aligned}$$
Modular invariants
Modular form 83790.2.a.bo
For more coefficients, see the Downloads section to the right.
Modular degree: | 6912000 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{20}$ | nonsplit multiplicative | 1 | 1 | 20 | 20 |
$3$ | $2$ | $I_{5}^{*}$ | additive | -1 | 2 | 11 | 5 |
$5$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$5$ | 5B.4.1 | 5.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7980 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 4796 & 5705 \\ 7035 & 2402 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 7740 & 7631 \end{array}\right),\left(\begin{array}{rr} 2279 & 0 \\ 0 & 7979 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 7961 & 20 \\ 7960 & 21 \end{array}\right),\left(\begin{array}{rr} 3991 & 6860 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4201 & 6860 \\ 5530 & 4761 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 1504 & 2275 \\ 3465 & 1154 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[7980])$ is a degree-$1906252185600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7980\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \) |
$3$ | additive | $8$ | \( 9310 = 2 \cdot 5 \cdot 7^{2} \cdot 19 \) |
$5$ | split multiplicative | $6$ | \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \) |
$7$ | additive | $26$ | \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 83790ch
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
The minimal quadratic twist of this elliptic curve is 570l1, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{21}) \) | \(\Z/10\Z\) | not in database |
$4$ | 4.2.4245360.2 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-15}, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.4055193344160000.121 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$8$ | 8.4.162207733766400.10 | \(\Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/30\Z\) | not in database |
$20$ | 20.0.146825208968871220570054691367244903564453125.1 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | split | add | ord | ord | ord | split | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 6 | - | 2 | - | 1 | 1 | 1 | 2 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.