Properties

Label 83790.ct
Number of curves $1$
Conductor $83790$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ct1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 83790.ct1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 83790.ct do not have complex multiplication.

Modular form 83790.2.a.ct

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + q^{8} - q^{10} - 5 q^{11} - q^{13} + q^{16} - 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 83790.ct

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
83790.ct1 83790dz1 \([1, -1, 1, -33263146100498, -73865964306817187823]\) \(-138357846491853121383730987168838623/55816105091607428996184145920\) \(-1641985872301182962046473833058937077760\) \([]\) \(7661122560\) \(6.4880\) \(\Gamma_0(N)\)-optimal