Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-12368031x+16736019925\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-12368031xz^2+16736019925z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-16028968203x+781076180152134\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1949, 5266)$ | $0.52204497775025635340431028340$ | $\infty$ |
$(33949/16, 391771/64)$ | $2.4791502826145985989289694693$ | $\infty$ |
Integral points
\( \left(-4055, 17274\right) \), \( \left(-4055, -13220\right) \), \( \left(1949, 5266\right) \), \( \left(1949, -7216\right) \), \( \left(2107, 4950\right) \), \( \left(2107, -7058\right) \), \( \left(788315, 699521510\right) \), \( \left(788315, -700309826\right) \)
Invariants
Conductor: | $N$ | = | \( 83582 \) | = | $2 \cdot 23^{2} \cdot 79$ |
|
Discriminant: | $\Delta$ | = | $7288236472465659376$ | = | $2^{4} \cdot 23^{6} \cdot 79^{5} $ |
|
j-invariant: | $j$ | = | \( \frac{1413378216646643521}{49232902384} \) | = | $2^{-4} \cdot 79^{-5} \cdot 1122241^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7098567119717998449782086589$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1421096040072249995748322430$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0196212670962481$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.347424307093508$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.2939843242614427517577825581$ |
|
Real period: | $\Omega$ | ≈ | $0.22003057662414443390721702115$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 40 $ = $ 2^{2}\cdot2\cdot5 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $11.388644680393965472450433715 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.388644680 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.220031 \cdot 1.293984 \cdot 40}{1^2} \\ & \approx 11.388644680\end{aligned}$$
Modular invariants
Modular form 83582.2.a.m
For more coefficients, see the Downloads section to the right.
Modular degree: | 2851200 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$23$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$79$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.4.2 | 5.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 36340 = 2^{2} \cdot 5 \cdot 23 \cdot 79 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 20701 & 12650 \\ 805 & 26911 \end{array}\right),\left(\begin{array}{rr} 3957 & 12650 \\ 22080 & 17481 \end{array}\right),\left(\begin{array}{rr} 26859 & 0 \\ 0 & 36339 \end{array}\right),\left(\begin{array}{rr} 18171 & 12650 \\ 24495 & 26911 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 36285 & 36221 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 36331 & 10 \\ 36330 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[36340])$ is a degree-$9861930919526400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/36340\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 41791 = 23^{2} \cdot 79 \) |
$5$ | good | $2$ | \( 1058 = 2 \cdot 23^{2} \) |
$23$ | additive | $266$ | \( 158 = 2 \cdot 79 \) |
$79$ | split multiplicative | $80$ | \( 1058 = 2 \cdot 23^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 83582n
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 158c2, its twist by $-23$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.3.316.1 | \(\Z/2\Z\) | not in database |
$4$ | 4.4.66125.1 | \(\Z/5\Z\) | not in database |
$6$ | 6.6.31554496.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$10$ | 10.0.16090857500000000.2 | \(\Z/5\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 79 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | ord | ord | ord | ord | ord | ss | add | ord | ord | ord | ord | ord | ord | split |
$\lambda$-invariant(s) | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2,2 | - | 2 | 2 | 2 | 4 | 2 | 2 | 3 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.