Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-222191x-40051275\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-222191xz^2-40051275z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-287959563x-1864312884666\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(795, 16530)$ | $0.92595295643758738826817831330$ | $\infty$ |
| $(-263, 660)$ | $1.4167806399016872772751481149$ | $\infty$ |
Integral points
\( \left(-293, 210\right) \), \( \left(-293, 82\right) \), \( \left(-263, 660\right) \), \( \left(-263, -398\right) \), \( \left(-261, 626\right) \), \( \left(-261, -366\right) \), \( \left(735, 13574\right) \), \( \left(735, -14310\right) \), \( \left(795, 16530\right) \), \( \left(795, -17326\right) \), \( \left(859, 19666\right) \), \( \left(859, -20526\right) \), \( \left(73755, 19993170\right) \), \( \left(73755, -20066926\right) \), \( \left(263179, 134881906\right) \), \( \left(263179, -135145086\right) \), \( \left(333007, 192001210\right) \), \( \left(333007, -192334218\right) \)
Invariants
| Conductor: | $N$ | = | \( 83582 \) | = | $2 \cdot 23^{2} \cdot 79$ |
|
| Discriminant: | $\Delta$ | = | $12262923547181056$ | = | $2^{20} \cdot 23^{6} \cdot 79 $ |
|
| j-invariant: | $j$ | = | \( \frac{8194759433281}{82837504} \) | = | $2^{-20} \cdot 79^{-1} \cdot 20161^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9051377557547496576778289923$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.33739064779017481227445257640$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9613126805385601$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.283506749509388$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.2939843242614427517577825581$ |
|
| Real period: | $\Omega$ | ≈ | $0.22003057662414443390721702115$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 40 $ = $ ( 2^{2} \cdot 5 )\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $11.388644680393965472450433715 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.388644680 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.220031 \cdot 1.293984 \cdot 40}{1^2} \\ & \approx 11.388644680\end{aligned}$$
Modular invariants
Modular form 83582.2.a.m
For more coefficients, see the Downloads section to the right.
| Modular degree: | 570240 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $20$ | $I_{20}$ | split multiplicative | -1 | 1 | 20 | 20 |
| $23$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $79$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5B.4.1 | 5.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 36340 = 2^{2} \cdot 5 \cdot 23 \cdot 79 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 18171 & 12650 \\ 0 & 32707 \end{array}\right),\left(\begin{array}{rr} 36331 & 10 \\ 36330 & 11 \end{array}\right),\left(\begin{array}{rr} 6326 & 6325 \\ 11845 & 30016 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 36285 & 36221 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 26859 & 0 \\ 0 & 36339 \end{array}\right),\left(\begin{array}{rr} 21506 & 6325 \\ 35535 & 30016 \end{array}\right)$.
The torsion field $K:=\Q(E[36340])$ is a degree-$9861930919526400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/36340\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 41791 = 23^{2} \cdot 79 \) |
| $5$ | good | $2$ | \( 41791 = 23^{2} \cdot 79 \) |
| $23$ | additive | $266$ | \( 158 = 2 \cdot 79 \) |
| $79$ | split multiplicative | $80$ | \( 1058 = 2 \cdot 23^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 83582.m
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 158.d2, its twist by $-23$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-23}) \) | \(\Z/5\Z\) | not in database |
| $3$ | 3.3.316.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.6.31554496.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.1214947952.2 | \(\Z/10\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
| $16$ | deg 16 | \(\Z/15\Z\) | not in database |
| $20$ | 20.4.2909791600285853356939616823580082558657682159423828125.1 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 79 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | ord | ord | ord | ord | ord | ord | ss | add | ord | ord | ord | ord | ord | ord | split |
| $\lambda$-invariant(s) | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2,2 | - | 2 | 2 | 2 | 4 | 2 | 2 | 3 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.