Properties

Label 8330w
Number of curves $1$
Conductor $8330$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 8330w1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8330w do not have complex multiplication.

Modular form 8330.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + 3 q^{3} + q^{4} + q^{5} + 3 q^{6} + q^{8} + 6 q^{9} + q^{10} + 2 q^{11} + 3 q^{12} + q^{13} + 3 q^{15} + q^{16} - q^{17} + 6 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 8330w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8330.ba1 8330w1 \([1, -1, 1, 603, 1789]\) \(206425071/133280\) \(-15680258720\) \([]\) \(11520\) \(0.64522\) \(\Gamma_0(N)\)-optimal