Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-1084788x-434966094\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-1084788xz^2-434966094z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1405884627x-20289560416146\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 8330 \) | = | $2 \cdot 5 \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-471844520000$ | = | $-1 \cdot 2^{6} \cdot 5^{4} \cdot 7^{4} \cdot 17^{3} $ |
|
j-invariant: | $j$ | = | \( -\frac{58798411541899527001}{196520000} \) | = | $-1 \cdot 2^{-6} \cdot 5^{-4} \cdot 7^{5} \cdot 17^{-3} \cdot 31^{3} \cdot 59^{3} \cdot 83^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8859420144945210358494797016$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2373052981427499341476954538$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0618048692228041$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.904578901657135$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.073966213850196272614574813132$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 2\cdot2^{2}\cdot3\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.7751891324047105427497955152 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.775189132 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.073966 \cdot 1.000000 \cdot 24}{1^2} \\ & \approx 1.775189132\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 69120 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$7$ | $3$ | $IV$ | additive | 1 | 2 | 4 | 0 |
$17$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 204 = 2^{2} \cdot 3 \cdot 17 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 199 & 6 \\ 198 & 7 \end{array}\right),\left(\begin{array}{rr} 122 & 87 \\ 163 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 103 & 6 \\ 105 & 19 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 37 & 6 \\ 111 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[204])$ is a degree-$22560768$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/204\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 833 = 7^{2} \cdot 17 \) |
$3$ | good | $2$ | \( 245 = 5 \cdot 7^{2} \) |
$5$ | split multiplicative | $6$ | \( 1666 = 2 \cdot 7^{2} \cdot 17 \) |
$7$ | additive | $20$ | \( 170 = 2 \cdot 5 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 490 = 2 \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 8330i
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.3332.1 | \(\Z/2\Z\) | not in database |
$3$ | 3.1.3675.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.754951232.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.40516875.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.0.299760048.4 | \(\Z/6\Z\) | not in database |
$9$ | 9.1.15606257499000000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.98391458146642755520492873678768685611200000000.4 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.6575992374377530845027000000000000.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.76581571639269473283834432000000000000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 17 |
---|---|---|---|---|---|
Reduction type | nonsplit | ord | split | add | nonsplit |
$\lambda$-invariant(s) | 3 | 2 | 5 | - | 0 |
$\mu$-invariant(s) | 0 | 1 | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.