Properties

Label 82800co
Number of curves $2$
Conductor $82800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("co1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 82800co have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 82800co do not have complex multiplication.

Modular form 82800.2.a.co

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + 4 q^{11} + 2 q^{13} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 82800co

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
82800.eu2 82800co1 \([0, 0, 0, -5400, 151875]\) \(3538944/23\) \(113177250000\) \([2]\) \(73728\) \(0.95710\) \(\Gamma_0(N)\)-optimal
82800.eu1 82800co2 \([0, 0, 0, -8775, -60750]\) \(949104/529\) \(41649228000000\) \([2]\) \(147456\) \(1.3037\)