Show commands: SageMath
Rank
The elliptic curves in class 82368.y have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 82368.y do not have complex multiplication.Modular form 82368.2.a.y
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 82368.y
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
82368.y1 | 82368w4 | \([0, 0, 0, -3953676, -3025866256]\) | \(35765103905346817/1287\) | \(245949530112\) | \([2]\) | \(1048576\) | \(2.1301\) | |
82368.y2 | 82368w6 | \([0, 0, 0, -1733196, 850442096]\) | \(3013001140430737/108679952667\) | \(20769062386202836992\) | \([2]\) | \(2097152\) | \(2.4767\) | |
82368.y3 | 82368w3 | \([0, 0, 0, -273036, -36751120]\) | \(11779205551777/3763454409\) | \(719207337600221184\) | \([2, 2]\) | \(1048576\) | \(2.1301\) | |
82368.y4 | 82368w2 | \([0, 0, 0, -247116, -47274640]\) | \(8732907467857/1656369\) | \(316537045254144\) | \([2, 2]\) | \(524288\) | \(1.7835\) | |
82368.y5 | 82368w1 | \([0, 0, 0, -13836, -898576]\) | \(-1532808577/938223\) | \(-179297207451648\) | \([2]\) | \(262144\) | \(1.4370\) | \(\Gamma_0(N)\)-optimal |
82368.y6 | 82368w5 | \([0, 0, 0, 772404, -250439056]\) | \(266679605718863/296110251723\) | \(-56587550328374427648\) | \([2]\) | \(2097152\) | \(2.4767\) |