Learn more

Refine search


Results (1-50 of 128 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
82110.a1 82110.a 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,190617323843,32031810672497613][1, 1, 0, -190617323843, 32031810672497613] y2+xy=x3+x2190617323843x+32031810672497613y^2+xy=x^3+x^2-190617323843x+32031810672497613 2.3.0.a.1, 170.6.0.?, 644.6.0.?, 54740.12.0.?
82110.a2 82110.a 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,12359403843,461013931889613][1, 1, 0, -12359403843, 461013931889613] y2+xy=x3+x212359403843x+461013931889613y^2+xy=x^3+x^2-12359403843x+461013931889613 2.3.0.a.1, 322.6.0.?, 340.6.0.?, 54740.12.0.?
82110.b1 82110.b 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 trivial\mathsf{trivial} 11 [1,1,0,4093218138,100989673531668][1, 1, 0, -4093218138, 100989673531668] y2+xy=x3+x24093218138x+100989673531668y^2+xy=x^3+x^2-4093218138x+100989673531668 4692.2.0.?
82110.c1 82110.c 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,895163,202922493][1, 1, 0, -895163, 202922493] y2+xy=x3+x2895163x+202922493y^2+xy=x^3+x^2-895163x+202922493 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.?
82110.c2 82110.c 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,168357,22336797][1, 1, 0, 168357, 22336797] y2+xy=x3+x2+168357x+22336797y^2+xy=x^3+x^2+168357x+22336797 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.?
82110.d1 82110.d 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 13.5813546513.58135465 [1,1,0,3584833,2613965123][1, 1, 0, -3584833, -2613965123] y2+xy=x3+x23584833x2613965123y^2+xy=x^3+x^2-3584833x-2613965123 2.3.0.a.1, 280.6.0.?, 1564.6.0.?, 109480.12.0.?
82110.d2 82110.d 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 6.7906773296.790677329 [1,1,0,223433,41149563][1, 1, 0, -223433, -41149563] y2+xy=x3+x2223433x41149563y^2+xy=x^3+x^2-223433x-41149563 2.3.0.a.1, 280.6.0.?, 782.6.0.?, 109480.12.0.?
82110.e1 82110.e 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 5.3782652395.378265239 [1,1,0,816718,284072012][1, 1, 0, -816718, -284072012] y2+xy=x3+x2816718x284072012y^2+xy=x^3+x^2-816718x-284072012 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 280.24.0.?, 4692.12.0.?, \ldots
82110.e2 82110.e 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 1.3445663091.344566309 [1,1,0,625998,189084852][1, 1, 0, -625998, 189084852] y2+xy=x3+x2625998x+189084852y^2+xy=x^3+x^2-625998x+189084852 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 140.12.0.?, 280.24.0.?, \ldots
82110.e3 82110.e 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 2.6891326192.689132619 [1,1,0,65998,1651148][1, 1, 0, -65998, -1651148] y2+xy=x3+x265998x1651148y^2+xy=x^3+x^2-65998x-1651148 2.6.0.a.1, 8.12.0-2.a.1.1, 140.12.0.?, 280.24.0.?, 4692.12.0.?, \ldots
82110.e4 82110.e 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 5.3782652395.378265239 [1,1,0,15922,192972][1, 1, 0, 15922, -192972] y2+xy=x3+x2+15922x192972y^2+xy=x^3+x^2+15922x-192972 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 140.12.0.?, 280.24.0.?, \ldots
82110.f1 82110.f 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 trivial\mathsf{trivial} 0.8564524120.856452412 [1,1,0,28,98][1, 1, 0, -28, -98] y2+xy=x3+x228x98y^2+xy=x^3+x^2-28x-98 15640.2.0.?
82110.g1 82110.g 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 trivial\mathsf{trivial} 1.2915567351.291556735 [1,1,0,633,6867][1, 1, 0, -633, -6867] y2+xy=x3+x2633x6867y^2+xy=x^3+x^2-633x-6867 109480.2.0.?
82110.h1 82110.h 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 trivial\mathsf{trivial} 1.3470453951.347045395 [1,1,0,192397,70948309][1, 1, 0, -192397, 70948309] y2+xy=x3+x2192397x+70948309y^2+xy=x^3+x^2-192397x+70948309 15640.2.0.?
82110.i1 82110.i 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 0.4334835500.433483550 [1,1,0,15402,738684][1, 1, 0, -15402, -738684] y2+xy=x3+x215402x738684y^2+xy=x^3+x^2-15402x-738684 2.3.0.a.1, 68.6.0.b.1, 322.6.0.?, 10948.12.0.?
82110.i2 82110.i 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 0.8669671000.866967100 [1,1,0,6902,1539384][1, 1, 0, -6902, -1539384] y2+xy=x3+x26902x1539384y^2+xy=x^3+x^2-6902x-1539384 2.3.0.a.1, 68.6.0.a.1, 644.6.0.?, 10948.12.0.?
82110.j1 82110.j 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 trivial\mathsf{trivial} 1.2201791861.220179186 [1,1,0,13223,328741][1, 1, 0, 13223, 328741] y2+xy=x3+x2+13223x+328741y^2+xy=x^3+x^2+13223x+328741 4692.2.0.?
82110.k1 82110.k 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 trivial\mathsf{trivial} 3.8132068153.813206815 [1,1,0,9947,453789][1, 1, 0, -9947, 453789] y2+xy=x3+x29947x+453789y^2+xy=x^3+x^2-9947x+453789 109480.2.0.?
82110.l1 82110.l 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,30530047,48901755569][1, 1, 0, -30530047, -48901755569] y2+xy=x3+x230530047x48901755569y^2+xy=x^3+x^2-30530047x-48901755569 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.?
82110.l2 82110.l 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,4632583,4857045231][1, 1, 0, 4632583, -4857045231] y2+xy=x3+x2+4632583x4857045231y^2+xy=x^3+x^2+4632583x-4857045231 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.?
82110.m1 82110.m 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 0.5301919960.530191996 [1,1,0,283467,57972069][1, 1, 0, -283467, 57972069] y2+xy=x3+x2283467x+57972069y^2+xy=x^3+x^2-283467x+57972069 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.?
82110.m2 82110.m 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 1.0603839931.060383993 [1,1,0,17587,914221][1, 1, 0, -17587, 914221] y2+xy=x3+x217587x+914221y^2+xy=x^3+x^2-17587x+914221 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.?
82110.n1 82110.n 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 0.7092414710.709241471 [1,1,0,8527076512,303070218228736][1, 1, 0, -8527076512, 303070218228736] y2+xy=x3+x28527076512x+303070218228736y^2+xy=x^3+x^2-8527076512x+303070218228736 2.3.0.a.1, 68.6.0.b.1, 322.6.0.?, 10948.12.0.?
82110.n2 82110.n 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 1.4184829421.418482942 [1,1,0,8524900512,303232630081536][1, 1, 0, -8524900512, 303232630081536] y2+xy=x3+x28524900512x+303232630081536y^2+xy=x^3+x^2-8524900512x+303232630081536 2.3.0.a.1, 68.6.0.a.1, 644.6.0.?, 10948.12.0.?
82110.o1 82110.o 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,5686712,5222003136][1, 1, 0, -5686712, -5222003136] y2+xy=x3+x25686712x5222003136y^2+xy=x^3+x^2-5686712x-5222003136 2.3.0.a.1, 4.12.0-4.c.1.2, 170.6.0.?, 340.24.0.?, 552.24.0.?, \ldots
82110.o2 82110.o 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,355512,81660096][1, 1, 0, -355512, -81660096] y2+xy=x3+x2355512x81660096y^2+xy=x^3+x^2-355512x-81660096 2.6.0.a.1, 4.12.0-2.a.1.1, 276.24.0.?, 340.24.0.?, 23460.48.0.?
82110.o3 82110.o 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/4Z\Z/4\Z 11 [1,1,0,267192,123117504][1, 1, 0, -267192, -123117504] y2+xy=x3+x2267192x123117504y^2+xy=x^3+x^2-267192x-123117504 2.3.0.a.1, 4.12.0-4.c.1.1, 276.24.0.?, 680.24.0.?, 46920.48.0.?
82110.o4 82110.o 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,27832,592064][1, 1, 0, -27832, -592064] y2+xy=x3+x227832x592064y^2+xy=x^3+x^2-27832x-592064 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 276.12.0.?, 340.12.0.?, \ldots
82110.p1 82110.p 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,56389462,86452482004][1, 1, 0, -56389462, 86452482004] y2+xy=x3+x256389462x+86452482004y^2+xy=x^3+x^2-56389462x+86452482004 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.?
82110.p2 82110.p 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,1,0,11675818,9906268116][1, 1, 0, 11675818, 9906268116] y2+xy=x3+x2+11675818x+9906268116y^2+xy=x^3+x^2+11675818x+9906268116 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.?
82110.q1 82110.q 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 trivial\mathsf{trivial} 11 [1,1,0,4172048132,135120107513136][1, 1, 0, -4172048132, -135120107513136] y2+xy=x3+x24172048132x135120107513136y^2+xy=x^3+x^2-4172048132x-135120107513136 4692.2.0.?
82110.r1 82110.r 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 trivial\mathsf{trivial} 1.8575363871.857536387 [1,1,0,149608,135121056][1, 1, 0, 149608, -135121056] y2+xy=x3+x2+149608x135121056y^2+xy=x^3+x^2+149608x-135121056 109480.2.0.?
82110.s1 82110.s 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 22 trivial\mathsf{trivial} 0.1111212760.111121276 [1,0,1,46826,13756472][1, 0, 1, 46826, 13756472] y2+xy+y=x3+46826x+13756472y^2+xy+y=x^3+46826x+13756472 4692.2.0.?
82110.t1 82110.t 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 22 Z/2Z\Z/2\Z 0.5740908990.574090899 [1,0,1,4259,24838][1, 0, 1, -4259, -24838] y2+xy+y=x34259x24838y^2+xy+y=x^3-4259x-24838 2.3.0.a.1, 170.6.0.?, 644.6.0.?, 54740.12.0.?
82110.t2 82110.t 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 22 Z/2Z\Z/2\Z 0.5740908990.574090899 [1,0,1,2559,49282][1, 0, 1, -2559, 49282] y2+xy+y=x32559x+49282y^2+xy+y=x^3-2559x+49282 2.3.0.a.1, 322.6.0.?, 340.6.0.?, 54740.12.0.?
82110.u1 82110.u 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 22 Z/2Z\Z/2\Z 1.6753848101.675384810 [1,0,1,142605354,648136131428][1, 0, 1, -142605354, -648136131428] y2+xy+y=x3142605354x648136131428y^2+xy+y=x^3-142605354x-648136131428 2.3.0.a.1, 170.6.0.?, 644.6.0.?, 54740.12.0.?
82110.u2 82110.u 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 22 Z/2Z\Z/2\Z 1.6753848101.675384810 [1,0,1,16832554,10611485852][1, 0, 1, -16832554, 10611485852] y2+xy+y=x316832554x+10611485852y^2+xy+y=x^3-16832554x+10611485852 2.3.0.a.1, 322.6.0.?, 340.6.0.?, 54740.12.0.?
82110.v1 82110.v 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 22 Z/2Z\Z/2\Z 5.1169658995.116965899 [1,0,1,6306049,6094619972][1, 0, 1, -6306049, 6094619972] y2+xy+y=x36306049x+6094619972y^2+xy+y=x^3-6306049x+6094619972 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 68.12.0-4.c.1.2, 680.24.0.?, \ldots
82110.v2 82110.v 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 22 Z/2Z\Z/2\Z 0.3198103680.319810368 [1,0,1,400929,91746436][1, 0, 1, -400929, 91746436] y2+xy+y=x3400929x+91746436y^2+xy+y=x^3-400929x+91746436 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 68.12.0-4.c.1.1, 170.6.0.?, \ldots
82110.v3 82110.v 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 22 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 1.2792414741.279241474 [1,0,1,394129,95203556][1, 0, 1, -394129, 95203556] y2+xy+y=x3394129x+95203556y^2+xy+y=x^3-394129x+95203556 2.6.0.a.1, 20.12.0-2.a.1.1, 68.12.0-2.a.1.1, 340.24.0.?, 1932.12.0.?, \ldots
82110.v4 82110.v 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 22 Z/2Z\Z/2\Z 5.1169658995.116965899 [1,0,1,24209,1539812][1, 0, 1, -24209, 1539812] y2+xy+y=x324209x+1539812y^2+xy+y=x^3-24209x+1539812 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 136.12.0.?, 680.24.0.?, \ldots
82110.w1 82110.w 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,0,1,1475729,686964508][1, 0, 1, -1475729, -686964508] y2+xy+y=x31475729x686964508y^2+xy+y=x^3-1475729x-686964508 2.3.0.a.1, 280.6.0.?, 1564.6.0.?, 109480.12.0.?
82110.w2 82110.w 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,0,1,42129,22347548][1, 0, 1, -42129, -22347548] y2+xy+y=x342129x22347548y^2+xy+y=x^3-42129x-22347548 2.3.0.a.1, 280.6.0.?, 782.6.0.?, 109480.12.0.?
82110.x1 82110.x 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 0.2658446820.265844682 [1,0,1,20289,1093786][1, 0, 1, -20289, 1093786] y2+xy+y=x320289x+1093786y^2+xy+y=x^3-20289x+1093786 2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.?
82110.x2 82110.x 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/2Z\Z/2\Z 0.5316893650.531689365 [1,0,1,39,48886][1, 0, 1, -39, 48886] y2+xy+y=x339x+48886y^2+xy+y=x^3-39x+48886 2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.?
82110.y1 82110.y 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 Z/3Z\Z/3\Z 1.9464497891.946449789 [1,0,1,47204,3945026][1, 0, 1, -47204, 3945026] y2+xy+y=x347204x+3945026y^2+xy+y=x^3-47204x+3945026 3.8.0-3.a.1.2, 15640.2.0.?, 46920.16.0.?
82110.y2 82110.y 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 11 trivial\mathsf{trivial} 5.8393493695.839349369 [1,0,1,34381,15620942][1, 0, 1, 34381, 15620942] y2+xy+y=x3+34381x+15620942y^2+xy+y=x^3+34381x+15620942 3.8.0-3.a.1.1, 15640.2.0.?, 46920.16.0.?
82110.z1 82110.z 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/2Z\Z/2\Z 11 [1,0,1,3088994359,62459382879718][1, 0, 1, -3088994359, -62459382879718] y2+xy+y=x33088994359x62459382879718y^2+xy+y=x^3-3088994359x-62459382879718 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 8.6.0.b.1, 24.48.0-24.y.1.13, \ldots
82110.z2 82110.z 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/6Z\Z/6\Z 11 [1,0,1,548298544,4921801751126][1, 0, 1, -548298544, 4921801751126] y2+xy+y=x3548298544x+4921801751126y^2+xy+y=x^3-548298544x+4921801751126 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 8.6.0.b.1, 24.48.0-24.y.1.15, \ldots
82110.z3 82110.z 23571723 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 00 Z/6Z\Z/6\Z 11 [1,0,1,16857544,154988557526][1, 0, 1, -16857544, 154988557526] y2+xy+y=x316857544x+154988557526y^2+xy+y=x^3-16857544x+154988557526 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 8.6.0.c.1, 24.48.0-24.bw.1.15, \ldots
Next   displayed columns for results