Learn more

Refine search


Results (1-50 of 128 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
82110.a1 82110.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -190617323843, 32031810672497613]$ \(y^2+xy=x^3+x^2-190617323843x+32031810672497613\) 2.3.0.a.1, 170.6.0.?, 644.6.0.?, 54740.12.0.?
82110.a2 82110.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -12359403843, 461013931889613]$ \(y^2+xy=x^3+x^2-12359403843x+461013931889613\) 2.3.0.a.1, 322.6.0.?, 340.6.0.?, 54740.12.0.?
82110.b1 82110.b \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -4093218138, 100989673531668]$ \(y^2+xy=x^3+x^2-4093218138x+100989673531668\) 4692.2.0.?
82110.c1 82110.c \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -895163, 202922493]$ \(y^2+xy=x^3+x^2-895163x+202922493\) 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.?
82110.c2 82110.c \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 168357, 22336797]$ \(y^2+xy=x^3+x^2+168357x+22336797\) 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.?
82110.d1 82110.d \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $13.58135465$ $[1, 1, 0, -3584833, -2613965123]$ \(y^2+xy=x^3+x^2-3584833x-2613965123\) 2.3.0.a.1, 280.6.0.?, 1564.6.0.?, 109480.12.0.?
82110.d2 82110.d \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $6.790677329$ $[1, 1, 0, -223433, -41149563]$ \(y^2+xy=x^3+x^2-223433x-41149563\) 2.3.0.a.1, 280.6.0.?, 782.6.0.?, 109480.12.0.?
82110.e1 82110.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $5.378265239$ $[1, 1, 0, -816718, -284072012]$ \(y^2+xy=x^3+x^2-816718x-284072012\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 280.24.0.?, 4692.12.0.?, $\ldots$
82110.e2 82110.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $1.344566309$ $[1, 1, 0, -625998, 189084852]$ \(y^2+xy=x^3+x^2-625998x+189084852\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 140.12.0.?, 280.24.0.?, $\ldots$
82110.e3 82110.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.689132619$ $[1, 1, 0, -65998, -1651148]$ \(y^2+xy=x^3+x^2-65998x-1651148\) 2.6.0.a.1, 8.12.0-2.a.1.1, 140.12.0.?, 280.24.0.?, 4692.12.0.?, $\ldots$
82110.e4 82110.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $5.378265239$ $[1, 1, 0, 15922, -192972]$ \(y^2+xy=x^3+x^2+15922x-192972\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 140.12.0.?, 280.24.0.?, $\ldots$
82110.f1 82110.f \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\mathsf{trivial}$ $0.856452412$ $[1, 1, 0, -28, -98]$ \(y^2+xy=x^3+x^2-28x-98\) 15640.2.0.?
82110.g1 82110.g \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.291556735$ $[1, 1, 0, -633, -6867]$ \(y^2+xy=x^3+x^2-633x-6867\) 109480.2.0.?
82110.h1 82110.h \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.347045395$ $[1, 1, 0, -192397, 70948309]$ \(y^2+xy=x^3+x^2-192397x+70948309\) 15640.2.0.?
82110.i1 82110.i \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $0.433483550$ $[1, 1, 0, -15402, -738684]$ \(y^2+xy=x^3+x^2-15402x-738684\) 2.3.0.a.1, 68.6.0.b.1, 322.6.0.?, 10948.12.0.?
82110.i2 82110.i \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $0.866967100$ $[1, 1, 0, -6902, -1539384]$ \(y^2+xy=x^3+x^2-6902x-1539384\) 2.3.0.a.1, 68.6.0.a.1, 644.6.0.?, 10948.12.0.?
82110.j1 82110.j \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.220179186$ $[1, 1, 0, 13223, 328741]$ \(y^2+xy=x^3+x^2+13223x+328741\) 4692.2.0.?
82110.k1 82110.k \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\mathsf{trivial}$ $3.813206815$ $[1, 1, 0, -9947, 453789]$ \(y^2+xy=x^3+x^2-9947x+453789\) 109480.2.0.?
82110.l1 82110.l \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -30530047, -48901755569]$ \(y^2+xy=x^3+x^2-30530047x-48901755569\) 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.?
82110.l2 82110.l \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 4632583, -4857045231]$ \(y^2+xy=x^3+x^2+4632583x-4857045231\) 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.?
82110.m1 82110.m \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $0.530191996$ $[1, 1, 0, -283467, 57972069]$ \(y^2+xy=x^3+x^2-283467x+57972069\) 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.?
82110.m2 82110.m \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $1.060383993$ $[1, 1, 0, -17587, 914221]$ \(y^2+xy=x^3+x^2-17587x+914221\) 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.?
82110.n1 82110.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $0.709241471$ $[1, 1, 0, -8527076512, 303070218228736]$ \(y^2+xy=x^3+x^2-8527076512x+303070218228736\) 2.3.0.a.1, 68.6.0.b.1, 322.6.0.?, 10948.12.0.?
82110.n2 82110.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $1.418482942$ $[1, 1, 0, -8524900512, 303232630081536]$ \(y^2+xy=x^3+x^2-8524900512x+303232630081536\) 2.3.0.a.1, 68.6.0.a.1, 644.6.0.?, 10948.12.0.?
82110.o1 82110.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -5686712, -5222003136]$ \(y^2+xy=x^3+x^2-5686712x-5222003136\) 2.3.0.a.1, 4.12.0-4.c.1.2, 170.6.0.?, 340.24.0.?, 552.24.0.?, $\ldots$
82110.o2 82110.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -355512, -81660096]$ \(y^2+xy=x^3+x^2-355512x-81660096\) 2.6.0.a.1, 4.12.0-2.a.1.1, 276.24.0.?, 340.24.0.?, 23460.48.0.?
82110.o3 82110.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 0, -267192, -123117504]$ \(y^2+xy=x^3+x^2-267192x-123117504\) 2.3.0.a.1, 4.12.0-4.c.1.1, 276.24.0.?, 680.24.0.?, 46920.48.0.?
82110.o4 82110.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -27832, -592064]$ \(y^2+xy=x^3+x^2-27832x-592064\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 276.12.0.?, 340.12.0.?, $\ldots$
82110.p1 82110.p \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -56389462, 86452482004]$ \(y^2+xy=x^3+x^2-56389462x+86452482004\) 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.?
82110.p2 82110.p \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 11675818, 9906268116]$ \(y^2+xy=x^3+x^2+11675818x+9906268116\) 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.?
82110.q1 82110.q \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -4172048132, -135120107513136]$ \(y^2+xy=x^3+x^2-4172048132x-135120107513136\) 4692.2.0.?
82110.r1 82110.r \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.857536387$ $[1, 1, 0, 149608, -135121056]$ \(y^2+xy=x^3+x^2+149608x-135121056\) 109480.2.0.?
82110.s1 82110.s \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $2$ $\mathsf{trivial}$ $0.111121276$ $[1, 0, 1, 46826, 13756472]$ \(y^2+xy+y=x^3+46826x+13756472\) 4692.2.0.?
82110.t1 82110.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $2$ $\Z/2\Z$ $0.574090899$ $[1, 0, 1, -4259, -24838]$ \(y^2+xy+y=x^3-4259x-24838\) 2.3.0.a.1, 170.6.0.?, 644.6.0.?, 54740.12.0.?
82110.t2 82110.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $2$ $\Z/2\Z$ $0.574090899$ $[1, 0, 1, -2559, 49282]$ \(y^2+xy+y=x^3-2559x+49282\) 2.3.0.a.1, 322.6.0.?, 340.6.0.?, 54740.12.0.?
82110.u1 82110.u \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $2$ $\Z/2\Z$ $1.675384810$ $[1, 0, 1, -142605354, -648136131428]$ \(y^2+xy+y=x^3-142605354x-648136131428\) 2.3.0.a.1, 170.6.0.?, 644.6.0.?, 54740.12.0.?
82110.u2 82110.u \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $2$ $\Z/2\Z$ $1.675384810$ $[1, 0, 1, -16832554, 10611485852]$ \(y^2+xy+y=x^3-16832554x+10611485852\) 2.3.0.a.1, 322.6.0.?, 340.6.0.?, 54740.12.0.?
82110.v1 82110.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $2$ $\Z/2\Z$ $5.116965899$ $[1, 0, 1, -6306049, 6094619972]$ \(y^2+xy+y=x^3-6306049x+6094619972\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 68.12.0-4.c.1.2, 680.24.0.?, $\ldots$
82110.v2 82110.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $2$ $\Z/2\Z$ $0.319810368$ $[1, 0, 1, -400929, 91746436]$ \(y^2+xy+y=x^3-400929x+91746436\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 68.12.0-4.c.1.1, 170.6.0.?, $\ldots$
82110.v3 82110.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.279241474$ $[1, 0, 1, -394129, 95203556]$ \(y^2+xy+y=x^3-394129x+95203556\) 2.6.0.a.1, 20.12.0-2.a.1.1, 68.12.0-2.a.1.1, 340.24.0.?, 1932.12.0.?, $\ldots$
82110.v4 82110.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $2$ $\Z/2\Z$ $5.116965899$ $[1, 0, 1, -24209, 1539812]$ \(y^2+xy+y=x^3-24209x+1539812\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 136.12.0.?, 680.24.0.?, $\ldots$
82110.w1 82110.w \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1475729, -686964508]$ \(y^2+xy+y=x^3-1475729x-686964508\) 2.3.0.a.1, 280.6.0.?, 1564.6.0.?, 109480.12.0.?
82110.w2 82110.w \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -42129, -22347548]$ \(y^2+xy+y=x^3-42129x-22347548\) 2.3.0.a.1, 280.6.0.?, 782.6.0.?, 109480.12.0.?
82110.x1 82110.x \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $0.265844682$ $[1, 0, 1, -20289, 1093786]$ \(y^2+xy+y=x^3-20289x+1093786\) 2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.?
82110.x2 82110.x \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/2\Z$ $0.531689365$ $[1, 0, 1, -39, 48886]$ \(y^2+xy+y=x^3-39x+48886\) 2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.?
82110.y1 82110.y \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\Z/3\Z$ $1.946449789$ $[1, 0, 1, -47204, 3945026]$ \(y^2+xy+y=x^3-47204x+3945026\) 3.8.0-3.a.1.2, 15640.2.0.?, 46920.16.0.?
82110.y2 82110.y \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $1$ $\mathsf{trivial}$ $5.839349369$ $[1, 0, 1, 34381, 15620942]$ \(y^2+xy+y=x^3+34381x+15620942\) 3.8.0-3.a.1.1, 15640.2.0.?, 46920.16.0.?
82110.z1 82110.z \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3088994359, -62459382879718]$ \(y^2+xy+y=x^3-3088994359x-62459382879718\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 8.6.0.b.1, 24.48.0-24.y.1.13, $\ldots$
82110.z2 82110.z \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -548298544, 4921801751126]$ \(y^2+xy+y=x^3-548298544x+4921801751126\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 8.6.0.b.1, 24.48.0-24.y.1.15, $\ldots$
82110.z3 82110.z \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -16857544, 154988557526]$ \(y^2+xy+y=x^3-16857544x+154988557526\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 8.6.0.c.1, 24.48.0-24.bw.1.15, $\ldots$
Next   displayed columns for results