Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2+xy+y=x^3-x^2-6480392x-3215030709\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z+xyz+yz^2=x^3-x^2z-6480392xz^2-3215030709z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-103686267x-205865651626\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-979, 47289)$ | $0.54331358160431947462200315258$ | $\infty$ | 
| $(-1291, 55401)$ | $0$ | $4$ | 
Integral points
      
    \( \left(-1939, 46329\right) \), \( \left(-1939, -44391\right) \), \( \left(-1629, 55739\right) \), \( \left(-1629, -54111\right) \), \( \left(-1291, 55401\right) \), \( \left(-1291, -54111\right) \), \( \left(-979, 47289\right) \), \( \left(-979, -46311\right) \), \( \left(2765, -1383\right) \), \( \left(2921, 51189\right) \), \( \left(2921, -54111\right) \), \( \left(3441, 121649\right) \), \( \left(3441, -125091\right) \), \( \left(27101, 4427769\right) \), \( \left(27101, -4454871\right) \), \( \left(108221, 35537289\right) \), \( \left(108221, -35645511\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 8190 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $12947580802955635200000$ | = | $2^{12} \cdot 3^{11} \cdot 5^{5} \cdot 7 \cdot 13^{8} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{41285728533151645510969}{17760741842188800000} \) | = | $2^{-12} \cdot 3^{-5} \cdot 5^{-5} \cdot 7^{-1} \cdot 13^{-8} \cdot 34562089^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9393045106908540481416931796$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.3899983663567992024440705611$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.028583907680732$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.5107792126890685$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.54331358160431947462200315258$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.098382352148794186281492419329$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1920 $ = $ ( 2^{2} \cdot 3 )\cdot2^{2}\cdot5\cdot1\cdot2^{3} $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $6.4142961735142542651857911143 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 6.414296174 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.098382 \cdot 0.543314 \cdot 1920}{4^2} \\ & \approx 6.414296174\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 921600 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 | 
| $3$ | $4$ | $I_{5}^{*}$ | additive | -1 | 2 | 11 | 5 | 
| $5$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 | 
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
| $13$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.12.0.7 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 113 & 108 \\ 110 & 527 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 508 & 1 \\ 191 & 6 \end{array}\right),\left(\begin{array}{rr} 323 & 318 \\ 530 & 107 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 834 & 835 \end{array}\right),\left(\begin{array}{rr} 272 & 837 \\ 275 & 838 \end{array}\right),\left(\begin{array}{rr} 124 & 1 \\ 503 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 315 = 3^{2} \cdot 5 \cdot 7 \) | 
| $3$ | additive | $8$ | \( 455 = 5 \cdot 7 \cdot 13 \) | 
| $5$ | split multiplicative | $6$ | \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \) | 
| $7$ | nonsplit multiplicative | $8$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) | 
| $13$ | split multiplicative | $14$ | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 8190bp
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2730c1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{105}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | 4.0.60480.4 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.343064484000000.38 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.4480842240000.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | 8.8.609892416000000.11 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | 8.2.7592405385166875.5 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/16\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | split | nonsplit | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 2 | - | 2 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.