Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 8190bp have rank \(1\).
L-function data
| Bad L-factors: | 
 | |||||||||||||||||||||
| Good L-factors: | 
 | |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 8190bp do not have complex multiplication.Modular form 8190.2.a.bp
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 8190bp
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 8190.bn4 | 8190bp1 | \([1, -1, 1, -6480392, -3215030709]\) | \(41285728533151645510969/17760741842188800000\) | \(12947580802955635200000\) | \([4]\) | \(921600\) | \(2.9393\) | \(\Gamma_0(N)\)-optimal | 
| 8190.bn2 | 8190bp2 | \([1, -1, 1, -88736072, -321577414581]\) | \(105997782562506306791694649/51649016225625000000\) | \(37652132828480625000000\) | \([2, 2]\) | \(1843200\) | \(3.2859\) | |
| 8190.bn1 | 8190bp3 | \([1, -1, 1, -1419611072, -20587077214581]\) | \(434014578033107719741685694649/103121648659575000\) | \(75175681872830175000\) | \([2]\) | \(3686400\) | \(3.6325\) | |
| 8190.bn3 | 8190bp4 | \([1, -1, 1, -73951952, -432257250549]\) | \(-61354313914516350666047929/75227254486083984375000\) | \(-54840668520355224609375000\) | \([2]\) | \(3686400\) | \(3.6325\) | 
