Properties

Label 8190bp
Number of curves $4$
Conductor $8190$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8190bp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8190bp do not have complex multiplication.

Modular form 8190.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} - q^{7} + q^{8} + q^{10} - 4 q^{11} + q^{13} - q^{14} + q^{16} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 8190bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8190.bn4 8190bp1 \([1, -1, 1, -6480392, -3215030709]\) \(41285728533151645510969/17760741842188800000\) \(12947580802955635200000\) \([4]\) \(921600\) \(2.9393\) \(\Gamma_0(N)\)-optimal
8190.bn2 8190bp2 \([1, -1, 1, -88736072, -321577414581]\) \(105997782562506306791694649/51649016225625000000\) \(37652132828480625000000\) \([2, 2]\) \(1843200\) \(3.2859\)  
8190.bn1 8190bp3 \([1, -1, 1, -1419611072, -20587077214581]\) \(434014578033107719741685694649/103121648659575000\) \(75175681872830175000\) \([2]\) \(3686400\) \(3.6325\)  
8190.bn3 8190bp4 \([1, -1, 1, -73951952, -432257250549]\) \(-61354313914516350666047929/75227254486083984375000\) \(-54840668520355224609375000\) \([2]\) \(3686400\) \(3.6325\)