Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3-x^2+1464435x+122496381\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3-x^2z+1464435xz^2+122496381z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3+23430957x+7863199342\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-333/4, 333/8)$ | $0$ | $2$ | 
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 8190 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ |  | 
| Discriminant: | $\Delta$ | = | $-207518368763671875000$ | = | $-1 \cdot 2^{3} \cdot 3^{12} \cdot 5^{12} \cdot 7 \cdot 13^{4} $ |  | 
| j-invariant: | $j$ | = | \( \frac{476437916651992691759}{284661685546875000} \) | = | $2^{-3} \cdot 3^{-6} \cdot 5^{-12} \cdot 7^{-1} \cdot 11^{3} \cdot 13^{-4} \cdot 47^{3} \cdot 15107^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5877817507268186953864463263$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.0384756063927638496888237078$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0385713290887169$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.015595708412369$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.10886339523653729817658565666$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2^{2}\cdot2\cdot1\cdot2^{2} $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $0.87090716189229838541268525325 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |  | 
BSD formula
$$\begin{aligned} 0.870907162 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.108863 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 0.870907162\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 294912 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 | 
| $3$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 | 
| $5$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 | 
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
| $13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.6.0.1 | 
| $3$ | 3B.1.2 | 3.8.0.2 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 5459 & 10896 \\ 3640 & 1819 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 4201 & 24 \\ 6732 & 289 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 9614 & 1691 \end{array}\right),\left(\begin{array}{rr} 8646 & 10489 \\ 5915 & 7736 \end{array}\right),\left(\begin{array}{rr} 10897 & 24 \\ 10896 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8191 & 24 \\ 8202 & 289 \end{array}\right),\left(\begin{array}{rr} 4696 & 3 \\ 1101 & 10834 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 8737 & 24 \\ 6564 & 289 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$4869303828480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 63 = 3^{2} \cdot 7 \) | 
| $3$ | additive | $2$ | \( 91 = 7 \cdot 13 \) | 
| $5$ | nonsplit multiplicative | $6$ | \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \) | 
| $7$ | split multiplicative | $8$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) | 
| $13$ | split multiplicative | $14$ | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 8190.h
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2730.bd8, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-42}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/6\Z\) | not in database | 
| $3$ | 3.1.24843.1 | \(\Z/6\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{3}, \sqrt{-14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-14})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $4$ | \(\Q(\zeta_{12})\) | \(\Z/12\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-3}, \sqrt{14})\) | \(\Z/12\Z\) | not in database | 
| $6$ | 6.0.1851523947.3 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
| $6$ | 6.0.2211953942016.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $6$ | 6.2.118497532608.4 | \(\Z/12\Z\) | not in database | 
| $6$ | 6.0.6635861826048.3 | \(\Z/12\Z\) | not in database | 
| $8$ | 8.0.39969909374976.28 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $8$ | 8.4.290198039040000.26 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.12745506816.9 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/24\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/24\Z\) | not in database | 
| $18$ | 18.0.26141622825884541581004407400483000000000000.3 | \(\Z/18\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 13 | 
|---|---|---|---|---|---|
| Reduction type | nonsplit | add | nonsplit | split | split | 
| $\lambda$-invariant(s) | 4 | - | 0 | 1 | 1 | 
| $\mu$-invariant(s) | 1 | - | 0 | 0 | 0 | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
