Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2+115918x+29646289\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z+115918xz^2+29646289z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+1854693x+1899217206\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-83, 4451)$ | $0.26671966609695181437938480656$ | $\infty$ |
| $(-773/4, 769/8)$ | $0$ | $2$ |
Integral points
\( \left(-163, 2611\right) \), \( \left(-163, -2449\right) \), \( \left(-83, 4451\right) \), \( \left(-83, -4369\right) \), \( \left(187, 7511\right) \), \( \left(187, -7699\right) \), \( \left(407, 11801\right) \), \( \left(407, -12209\right) \), \( \left(799, 24737\right) \), \( \left(799, -25537\right) \), \( \left(1877, 81871\right) \), \( \left(1877, -83749\right) \)
Invariants
| Conductor: | $N$ | = | \( 8190 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-480114971648676000$ | = | $-1 \cdot 2^{5} \cdot 3^{6} \cdot 5^{3} \cdot 7^{8} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{236293804275620391}{658593925444000} \) | = | $2^{-5} \cdot 3^{3} \cdot 5^{-3} \cdot 7^{-8} \cdot 13^{-4} \cdot 206077^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0762704421739029016099195002$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5269642978398480559122968817$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.050921871224009$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.319781884437887$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.26671966609695181437938480656$ |
|
| Real period: | $\Omega$ | ≈ | $0.20732955680991360924850068300$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 480 $ = $ 5\cdot2\cdot3\cdot2^{3}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.6358644197242992065771369490 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.635864420 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.207330 \cdot 0.266720 \cdot 480}{2^2} \\ & \approx 6.635864420\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 122880 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $7$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 4.6.0.1 | $6$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 736 & 3 \\ 525 & 1042 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 328 & 1113 \\ 1227 & 694 \end{array}\right),\left(\begin{array}{rr} 1553 & 8 \\ 1552 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1554 & 1555 \end{array}\right),\left(\begin{array}{rr} 1081 & 528 \\ 684 & 553 \end{array}\right),\left(\begin{array}{rr} 976 & 723 \\ 459 & 1528 \end{array}\right),\left(\begin{array}{rr} 1039 & 0 \\ 0 & 1559 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$19322634240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 45 = 3^{2} \cdot 5 \) |
| $3$ | additive | $6$ | \( 182 = 2 \cdot 7 \cdot 13 \) |
| $5$ | split multiplicative | $6$ | \( 819 = 3^{2} \cdot 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 8190.bs
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 910.b4, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-10}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-6}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-6}, \sqrt{-10})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.5308416000000.78 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.148060224000000.15 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.242581871001600.205 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.2399575035312.7 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | split | split | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ss | ord |
| $\lambda$-invariant(s) | 4 | - | 2 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1,1 | 1 |
| $\mu$-invariant(s) | 1 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.