Properties

Label 816.f
Number of curves $4$
Conductor $816$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 816.f have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 816.f do not have complex multiplication.

Modular form 816.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + 4 q^{7} + q^{9} - 4 q^{11} + 6 q^{13} - 2 q^{15} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 816.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
816.f1 816b3 \([0, -1, 0, -752, 8160]\) \(22994537186/111537\) \(228427776\) \([2]\) \(512\) \(0.45230\)  
816.f2 816b2 \([0, -1, 0, -72, 0]\) \(40873252/23409\) \(23970816\) \([2, 2]\) \(256\) \(0.10573\)  
816.f3 816b1 \([0, -1, 0, -52, -128]\) \(61918288/153\) \(39168\) \([2]\) \(128\) \(-0.24084\) \(\Gamma_0(N)\)-optimal
816.f4 816b4 \([0, -1, 0, 288, -288]\) \(1285471294/751689\) \(-1539459072\) \([4]\) \(512\) \(0.45230\)