Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-725072x+236613192\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-725072xz^2+236613192z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-58730859x+172314824418\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(521, 0)$ | $0$ | $2$ |
Integral points
\( \left(521, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 81312 \) | = | $2^{5} \cdot 3 \cdot 7 \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $259818393869895168$ | = | $2^{9} \cdot 3^{12} \cdot 7^{2} \cdot 11^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{46477380430664}{286446699} \) | = | $2^{3} \cdot 3^{-12} \cdot 7^{-2} \cdot 11^{-1} \cdot 17977^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1798639172281914448289909734$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.46105589540904719073509509333$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.959774874827451$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.6077709069173745$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.31238401443015933214107484547$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.62476802886031866428214969094 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.624768029 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.312384 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 0.624768029\end{aligned}$$
Modular invariants
Modular form 81312.2.a.r
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1105920 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | 1 | 5 | 9 | 0 |
| $3$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $11$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.8 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 212 & 263 \\ 97 & 258 \end{array}\right),\left(\begin{array}{rr} 168 & 41 \\ 91 & 78 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 257 & 8 \\ 256 & 9 \end{array}\right),\left(\begin{array}{rr} 96 & 223 \\ 239 & 252 \end{array}\right),\left(\begin{array}{rr} 89 & 8 \\ 92 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 258 & 259 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$20275200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 121 = 11^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 27104 = 2^{5} \cdot 7 \cdot 11^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 11616 = 2^{5} \cdot 3 \cdot 11^{2} \) |
| $11$ | additive | $72$ | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 81312c
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 7392l2, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{22}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.746427861172224.7 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.2407470785888256.38 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 7 | 11 |
|---|---|---|---|---|
| Reduction type | add | nonsplit | nonsplit | add |
| $\lambda$-invariant(s) | - | 0 | 0 | - |
| $\mu$-invariant(s) | - | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.