Properties

Label 81144.x
Number of curves $1$
Conductor $81144$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 81144.x1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 81144.x do not have complex multiplication.

Modular form 81144.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - 5 q^{11} + 4 q^{13} + 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 81144.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81144.x1 81144n1 \([0, 0, 0, 40740, -45560396]\) \(116822144000/14076282141\) \(-901051422850720512\) \([]\) \(788480\) \(2.1246\) \(\Gamma_0(N)\)-optimal