Properties

Label 81144.l
Number of curves $1$
Conductor $81144$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 81144.l1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 81144.l do not have complex multiplication.

Modular form 81144.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} + 4 q^{11} + 3 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 81144.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81144.l1 81144bh1 \([0, 0, 0, 1701, 2646]\) \(39366/23\) \(-318011774976\) \([]\) \(82944\) \(0.89653\) \(\Gamma_0(N)\)-optimal