Properties

Label 81144.bg
Number of curves $1$
Conductor $81144$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 81144.bg1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 81144.bg do not have complex multiplication.

Modular form 81144.2.a.bg

Copy content sage:E.q_eigenform(10)
 
\(q + 6 q^{11} - q^{13} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 81144.bg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81144.bg1 81144bo1 \([0, 0, 0, 10771425, -344654606961]\) \(100718081964000000/37453512751940327\) \(-51395880104927313124185072\) \([]\) \(16450560\) \(3.6126\) \(\Gamma_0(N)\)-optimal