Properties

Label 81144.bc
Number of curves $2$
Conductor $81144$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 81144.bc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 81144.bc do not have complex multiplication.

Modular form 81144.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{13} + 8 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 81144.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81144.bc1 81144bj2 \([0, 0, 0, -20571915, 35913700438]\) \(10963069081334500/1156923\) \(101606193157819392\) \([2]\) \(2580480\) \(2.6916\)  
81144.bc2 81144bj1 \([0, 0, 0, -1282575, 564055954]\) \(-10627137250000/110008287\) \(-2415355917784250112\) \([2]\) \(1290240\) \(2.3450\) \(\Gamma_0(N)\)-optimal