Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-571952x+63200448\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-571952xz^2+63200448z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-46328139x+45934142202\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(88, 3680)$ | $4.8797928667849494447996716426$ | $\infty$ |
$(113, 0)$ | $0$ | $2$ |
Integral points
\((88,\pm 3680)\), \( \left(113, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 8112 \) | = | $2^{4} \cdot 3 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $10259416407675322368$ | = | $2^{14} \cdot 3^{10} \cdot 13^{9} $ |
|
j-invariant: | $j$ | = | \( \frac{476379541}{236196} \) | = | $2^{-2} \cdot 3^{-10} \cdot 11^{3} \cdot 71^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3409087564464328327721475136$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.27595044220966502868520018903$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.065463153454839$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.708639766086867$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.8797928667849494447996716426$ |
|
Real period: | $\Omega$ | ≈ | $0.20279564320570811163367150178$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.9584029325211205646817387389 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.958402933 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.202796 \cdot 4.879793 \cdot 16}{2^2} \\ & \approx 3.958402933\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 149760 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 |
$3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$13$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$5$ | 5B | 5.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 761 & 20 \\ 760 & 21 \end{array}\right),\left(\begin{array}{rr} 521 & 20 \\ 530 & 201 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 540 & 431 \end{array}\right),\left(\begin{array}{rr} 471 & 20 \\ 760 & 647 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 389 & 760 \\ 770 & 579 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 42 & 775 \\ 125 & 698 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[780])$ is a degree-$201277440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/780\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 13 \) |
$3$ | nonsplit multiplicative | $4$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
$5$ | good | $2$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
$13$ | additive | $62$ | \( 48 = 2^{4} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 8112w
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
The minimal quadratic twist of this elliptic curve is 1014c2, its twist by $-52$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.19773.1 | \(\Z/4\Z\) | not in database |
$4$ | 4.4.35152.1 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$8$ | 8.4.2846967791616.26 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.390971529.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$20$ | 20.0.419314835571431481344000000000000000.2 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ord | ord | ss | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 3 | 1 | 1 | 3,3 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.